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Abstract: - This paper describes our research in technology for the management and control of distributed 
energy resource agents. An agent-based management and control system is being developed to enable large-
scale deployment of distributed energy resources. Local intelligent agents will allow consumers who are 
connected at low levels in the distribution network to manage their energy requirements and participate in 
coordinated responses to network stimuli. Such responses can be used to ease the volatility of wholesale 
electricity prices and assist constrained networks during summer and winter demand peaks. In our system, 
coordination of energy resources is decentralized. The coordination mechanism is asynchronous and adapts to 
change in an unsupervised manner, making it intrinsically scalable and robust.  
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1   Introduction 
With the increasing gap between electricity supply 
and demand, the electricity industry in many 
countries is facing a number of new pressures. The 
distributed electricity generation technologies, 
alongside improved demand-side management 
techniques have been identified as one set of 
solutions to this challenge [1]. The idea of switching 
loads and generators on/off to respond to price 
signals and network constraints is technically 
achievable and becoming more economically viable 
for businesses requiring greater supply reliability, 
flexibility, and lower cost to the consumers.  
       We have been developing multi-agent 
technology for the management and control of 
distributed energy resources [2-3], aimed at 
deployment in the Australian National Electricity 
Market within the next five years. A component of 
this work is the development of algorithms for 
coordinating distributed energy resources (DERs) 
comprising customer loads and generators. DERs 
are coordinated to aggregate sufficient distributed 
capacity to be of strategic value to market 
participants such as retailers and network 
businesses. Such aggregation is a significant 
challenge, particularly for large numbers of DERs 
and when centralized control techniques are not 
feasible. 
      To achieve a coordinated response by a group of 

distributed energy agents we have previously 
developed planning algorithms [2], which combine 
predicted environmental conditions, models for the 
constraints and behaviour of loads and generators, 
and a system goal to calculate plans for each 
resource for a period into the future. Each plan is a 
state sequence, for example, a set of switching 
actions and times that an agent will carry out in the 
future. A centralized genetic optimization algorithm 
was used in [2] to simultaneously calculate the plans 
for each resource. Therefore, there are two problems 
that need to be solved: scalability to large numbers 
of resources; and adaptability to changes in both 
local and global conditions. Since the behaviour of 
all agents was optimized for a particular set of 
events, the solution was not expected to scale well, 
particularly as genetic algorithms are used as the 
optimization tool, and the assembly of agents must 
satisfy system global as well as local goals. Sudden 
changes in the situation of one or more agents are 
not anticipated or accounted for.  For example, 
suppose that large quantities are added to or 
removed from a cool room; such an event would 
require re-optimization of the whole system. 
      Two current methods of improving distribution 
exist in the literature and are currently under trial [4-
7]. These, together with their problems, are as 
follows. 
i) Price-based control, where human “owners” of 
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each resource are asked to respond to a varying, 
broker-determined price for power. The 
disavantages are: (i-a) Human owners may not exist 
for some resources, or may not be able to or be 
willing to respond when asked. (i-b) There is no 
guarantee of the level of service to resources. (i-c) 
The process may lead to customer dissatisfaction 
since it requires effort from them and they are being 
asked to choose between cost, comfort and 
convenience. 
ii) Agent-based market-oriented algorithms, with 
real or virtual currency, where one or more broker 
agents carry out a negotiation process with each 
resource agent to fix usage and price. The 
disadvantages are: (ii-a) Lack of simple scalability. 
Market-based algorithms require hierarchies of 
brokers to negotiations with very large numbers of 
resources leading to potentially fragile structures. 
(ii-b) Market-based algorithms also require 
adaptation or replication to account for relationships 
between resource control actions at different times 
arising from their physical properties. (ii-c) 
Although the efficiency of market-based algorithms 
may be quantified there is no guarantee of an 
adequate level of service at resource or system level. 
In this paper we introduce an innovative distributed 
multi-agent coordination algorithm, which 
coordinates distributed energy resources by 
attempting to enforce a supply cap on the power 
drawn from the grid. The coordination mechanism is 
asynchronous and adapts to change in an 
unsupervised manner, making it intrinsically 
scalable and robust.  In the system, individual agents 
are selfish agents, and reasonably simple. However, 
the complex system response emerges out of low 
level agent coordination, which is in stark contrast to 
traditional centralized control systems. This work 
will bring potential solutions to the volatility of 
wholesale pool prices and an alternative way of 
dealing with network constraints during summer and 
winter peaks. 
       The paper is organized as follows. Section 2 
briefly introduces our distributed energy resource 
agent coordination system and shows how the 
system works based on available real time electricity 
market information. Since the technique is still in 
the patenting review process, the detailed technical 
parts will be omitted. Section 3 gives a series of 
experimental results, and section 4 concludes this 
paper. 
 
 
2 Management and Control of 
Distributed Resource Agent System 

In order to design a simpler, faster and scale-
independent algorithm, a distributed energy resource 
agent coordination system has been developed 
consisting of: 
• A group of resource agents. Each resource agent 

is a standalone computer program that controls a 
load or generator and has modelling capability to 
plan its electricity demand or supply for a period 
into the future. 

• One or more broker agents. Each broker agent is 
a standalone computer program that receives 
information about network or market needs and 
determines a control signal, e.g. a grid supply 
cap for a certain period of time. 

Resource agents are selfish: their primary purpose is 
to satisfy local goals  
      
 
2.1 How the System Works 
The resource agents have information about local 
constraints imposed by the electricity customer who 
owns the load or generator. Examples of constraints 
are temperature bounds for a heating/cooling 
environment. At convenient intervals the resource 
agents apply these constraints to a physical model of 
their resource to calculate a plan for electricity 
demand or supply for a period into the future, e.g. 
the next half hour. 
     The broker agent has knowledge of predicted 
electricity market price as well as information about 
the plans communicated by participating resource 
agents. The broker acts for electricity market 
participants, such as retailers and network operators, 
who provide additional information leading to a 
desired cap on the total demand for power drawn 
from the grid. 
     From this information the broker agent derives 
key features which are made available to resource 
agents, enabling them to revise their plans to help 
achieve global goals whilst continuing to adhere to 
their local constraints. By submitting revised plans 
they participate in a real-time process that continues 
until it stabilises. The process is asynchronous: no 
explicit coordination is needed between plan 
submission and broker action. The process is 
governed by the dispatch and trading cycles of the 
electricity market which determine when planning 
should advance to another time interval. 
     The heart of the algorithm, which allows the 
coordination process to be scalable and adaptable, 
lies in the broker-derived features and the means of 
communication between broker and resource agents.  
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2.2 Grid Supply Cap Based on Electricity 
Market Price 
In Australia, the National Electricity Market 
Management Company (NEMMCO) was 
established to manage the operation of the wholesale 
electricity market and security of the power system. 
Our homes, businesses and industries depend on a 
reliable supply of electricity to function. NEMMCO 
plays a central role in ensuring south-eastern 
Australia’s electricity supply through its 
responsibilities as market and system operator of the 
National Electricity Market (NEM). There is much 
electricity demand and price information available 
from NEMMCO, such as 5-minute pre-dispatch 
(forecast) prices, 30-minute pre-dispatch prices, 5-
minute dispatch prices, 30-minute trading prices, 
etc. 
     In our system, since we need to calculate a 
rolling plan of electricity demand or supply for a 
relatively short period into the future, we use 5-
minute pre-dispatch prices for the broker to set the 
system grid supply cap to maximize system profits. 
The 5 minute pre-dispatch price file is usually 
published one minute before the time of first 
prediction price and contains 5 minute pre-dispatch 
(forecast) data by region, showing short term price 
and demand forecasts looking out one hour ahead. 
The information is updated every 5 minutes.  The 5-
minute pre-dispatch price file is available in CSV 
format from the NEMMCO website [8]. 
 
 
3   Experimental Results 
We have developed a system with one broker agent 
and a number of loads – all cool room agents. The 
broker agent reads 5-minute pre-dispatch wholesale 
electricity prices from NEMMCO and sets the grid 
supply cap accordingly. Each cool room agent 
calculates a plan of electricity demand for the next 
half hour which satisfies its internal temperature 
constraints. Then cool room agents communicate 
and act as described in section 2, effectively 
cooperating to satisfy the system supply cap whilst 
continuing to adhere to their local constraints. 
     A series of experiments has been completed to 
investigate system coordination performance, which 
includes coordination scalability, maximum system 
demand reduction for a short period supply cap, the 
effect of resource agent diversity on coordination 
performance, and continuous coordination benefits 
for resource agents. Sections 3.1 to 3.3 describe 
experiments implemented in MATLAB® and 
Section 3.4 describes experiments implemented in 
GridAgents [9], a real-time agent environment 

tailored to distributed energy applications and built 
upon the open-source Java Agent Development 
Framework (JADE) [10].  
 
 
3.1 Room Model 
Cool rooms have internal temperature constraints 
with hard boundaries at 1˚ and 6˚ Celsius and soft 
boundaries at 2˚ and 5˚ Celsius. The internal 
temperature is governed by the model developed in 
[11] with most room features removed for the 
purposes of these experiments: 
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where Tai is internal temperature, Tao is external air 
temperature, Qp is the power capacity of the cool 
room plant, Ca is the thermal capacity of air in the 
cool room, f is the sampling rate, , 
A
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w is a coefficient, and Uw, Uv are thermal 
resistances of the wall and ventilation path. We 
modelled non-identical resource agents by allowing 
different thermal capacities Ca in the room model. In 
our experiments, f = 3000, , , and 
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3.2 Coordination of Constant Supply Cap 
 
3.2.1 Small Diversity of Cool Rooms 
We modelled a set of similar cool rooms with power 
capacity Qp = 3 kW and thermal capacity of air 
varying within a narrow range given by 

)9.01(0aC n
aC +=  (2) 

where 4
108964.8

−
×=aoC  and  for a set 

of  cool rooms. The thermal capacity is reflected 
in the typical period of a heating/cooling cycle. 

},,1{ Nn …=
N

Fig. 1 shows initial room temperatures and power 
demands for future half hour periods for a system 
with 3 cool rooms. The time constants of all cool 
rooms are very close to each other. A constant 
supply cap, 3kW, is applied to the system. Before 
coordination, the supply cap is not satisfied for the 
time 9:25 to 9:40. After several steps of coordination 
among resource agents, the supply cap is satisfied as 
shown in Fig. 2. 
     Table 1 lists coordination performance for the 
system with constant demand cap and different 
numbers of resource agents. From the table we can 
see that when agent numbers increase, the number of 
coordination steps increases as well, but at a much 
slower rate.  When the number of agents is big 

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007      570



enough, e.g. 10,000, the number of coordination 
steps even decreases.  This indicates that the number 
of coordination steps converges, so the coordination 
process is scalable. 
     In our simulation experiments, all resource 
agents were executed on one computer and used 
non-threaded calculations. In a deployed 
environment, each resource agent will have a 
dedicated machine and use threaded calculation. The 
total time for system coordination is less than 47 
milliseconds for a system with 10,000 agents, which 
is extremely fast. Therefore real time, deployed 
coordination is certainly possible. 
 

Table 1. Coordination for Different Number of 
Resource Agents 

Agent 
No. 

Supply 
Cap (kW) 

Coordination 
Steps 

Time per 
Agent (sec.) 

1 1 6 0.16 
10 10 6 0.03 
100 100 20 0.028 
1000 1000 32 0.045 
10000 10000 23 0.047 

 
 
3.2.2 Large Diversity of Cool Rooms 
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Fig. 1. Room & System States before Coordination 
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Fig. 2. Room & System States after Coordination. 
A system consisting of 10,000 cool rooms with large 
variations in parameters has been set up to test 
coordination performance and scalability. The cool 
rooms have the same temperature constraint, but 
diverse power capacities and time constants, random 
starting internal temperatures, and random initial 
switching states for the cooling plan.      
     Table 2 lists the minimum supply cap achievable 
for the systems comprising resource agents with 
different ranges of parameters.  “Capacity” is the 
power capacity of resource agents, “Ton” is turn on 
time constant of resource agents, “Toff” is turn off 
time constant of resource agents, “Cap” is the 
minimum system supply cap which could be 
satisfied, and “Stp” is the number of coordination 
steps needed for resource agents to satisfy the 
supply cap. Systems 1 to 3 have increasing diversity 
of resource agents. From the table, we can see that 
the system with more diverse resource agents will 
tolerate a smaller supply cap. 
 
Table 2. Coordination System with 10,000 Resource 

Agents 
System Capacit

y (kW) 
Ton 

(min) 
Toff

(min) 
Cap 

(kW) 
Stp 

1 3 9.5~ 
17.8 

8.8~ 
16.7 

10000 6 

2 3~ 
6.76 

4.83~ 
10.3 

4.5~ 
34.8 

7100 6 

3 1.5~ 
6.8 

4.83~ 
37.3 

4.5~ 
35 

5000 6 

 
      Table 3 gives constant cap coordination 
performance for the system 2 with different numbers 
of resource agents. Comparing with table 1, we can 
see that for the same supply cap, the system with the 
larger diversity among resource agents is able to 
coordinate much more easily. The coordination is 
scalable for large numbers of agents.  

Table 3. Coordination for Different 
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Number of Resource Agents. 
Agent 
No. 

Supply 
Cap (kW) 

Coordination 
Steps 

Time per 
Agent (sec.) 

10 10 5 0.03 
100 100 2 0.0096 
1000 1000 1 0.0073 

10000 10000 1 0.0076 
 
 
3.3  Continuous Coordination 
In a deployed environment, resource agents 
coordinate their plans every 5 minutes, i.e., 
continuously coordinate with each other. To 
investigate the system continuous coordination 
performance, we carried out a series of tests based 
on the systems 2 & 3 in table2. 
3.3.1 Demand Reduction for Short-period 
Supply Cap 
In a real situation, a supply cap occurs only when 
the electricity price is high enough. The broker may 
give advance notice to resource agents before 
supplying the cap. To test the system response to 
different cap notice times, the following tests have 
been executed for a supply cap of 15 minutes’ 
duration. 
 

Table 4. Demand reduction for different advance 
notice times 

System Advance Notice 
(minutes) 

Maximum Demand 
Reduction 

5 42.5% 
10 44% 

 
2 

15 45% 
5 50% 

10 52% 
 

3 
15 52% 

      
     Suppose the cap occurs between 9:30 and 9:45. 
Advance cap notices of 5, 10 and 15 minutes were 
investigated. Table 4 gives the percentage reduction 
in demand that could be achieved for different 
advance notice times. We can see that the more 
advance notice time is given, the more demand 
reduction can be achieved; the greater diversity of 
resource agents in the system, the more demand 
reduction can be achieved. 
 
 
3.3.2 Demand Reduction for Continuous 
Coordination System 
Demand reductions of continuous coordination for 
system 2 have also been tested, based on actual 
NEM price data. The continuous coordination is 
simulated for 24 hours, in this example from 3rd 
January 2006 at 9:15 am to 4th January 2006 at 9:10 

am. The supply cap is set based on the NEMCCO 5-
min pre-dispatch price: when price is more than 
$170/Mw supply cap will be 85% of total demand. 
Experimental results are shown in table 5 and Fig. 3. 
     Table 5 shows the experimental results for 
systems with different numbers of resource agents. 
For each system, the total electricity cost is 
compared with and without the supply cap. From the 
table we can see that for systems with different 
numbers of resource agents, from 250 to 10,000 
agents, the total cost saving is about the same. This 
further demonstrates the system scalability. 
Fig. 3 shows the results for a 10,000-agent system. 
In this example the NEM electricity price is high 
from 12:30 to 16:00. The system cost in this period 
drops from $175,851 to $164,009 as a result of 
applying the supply cap and achieving a 12% 
demand reduction during this time. Because the 
internal temperature constraints are always satisfied, 
the total power usage averaged over time must be 
similar with and without the supply cap, being 
determined by the rate of heat flow through the cool 
room walls.  Thus the demand reduction (12%) 
obtained for this long-period cap is less than that 
obtained for a short-period cap (~40%).  We expect 
that more sophisticated and optimised broker rules 
can achieve greater demand reductions in both 
cases. 

Table 5. Continuous Coordination System. 
Agent No. Total 

Cost with 
Cap 

Total Cost 
without 

Cap 

Saving 

250 $4,096 $4,376 6% 
500 $8,134 $8,710 7% 

1000 $16,355 $17,273 5% 
10000 $164,009 $175,851 7% 
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Fig. 3. Coordination System with 10000 Resource 

Agents 
   
 
3.4 Asynchronous Coordination in a Real-
Time Environment 
A real-time environment has been implemented 
using JADE, the Java Agent Development 
Framework, in order to test the viability of the 
algorithm within a real-time, asynchronous 
environment. Using a Java-based framework 
enabled us to run our agents on many different 
platforms and also armed us with the ability to use 
the same code both in simulation and deployment. 
     Our JADE implementation of the system was 
designed to maintain total independence between 
agents. To reduce network traffic, ensure system 
integrity and reduce the coupling between agents, 
wherever possible, information between agents is 
exchanged on request. A single communication in 
algorithmic terms is implemented as a brief 
conversation consisting of a sequence of events.  
Each agent is designed with a set of behaviours that 
can be invoked in any order. This reduces the 
coupling between behaviours and allows an agent to 
reprioritise its responsibilities with ease. The 
advantages of plug-and-play behaviours allow any 
programmer to construct an agent with different 
responsibilities with swiftness and simplicity. 
Our initial experiments in the JADE environment 
involved one broker and 100 resource agents. Fig. 4 
illustrates the total predicted load on the grid (upper 
graphs) which consists of the individual resource 
agent demands (bottom graphs).  Two screen 
captures were taken of the system; the right capture 
was taken one minute after the first. The resource 
agents satisfy the cap, marked by a horizontal line in 
the top panel, within one minute of the broker agent 
determining the cap level. The cap was set at 50% of 
the consumption when the NEM price was at a 
maximum. 
     The test results of our JADE implementation 
revealed a particular point of interest: the 
randomness in agent start-up and cycle times which 

are inherent features of a real-time environment 
helped to improve the speed and quality with which 
agents satisfy the cap. This is early experimental 
evidence that convergence of the coordination 
process is not only possible in a deployed 
environment, with asynchronous actions and 
communications, but improved over a more 
synchronous simulation environment. 
 
 
4   Conclusion 
An innovative distributed multi-agent coordination 
system has been introduced in this paper, which 
coordinates distributed energy resources to permit a 
supply cap on the power drawn from the grid. The 
coordination mechanism is asynchronous and adapts 
to change in an unsupervised manner, making it 
intrinsically scalable and robust. This system 
overcomes many of the difficulties of previously 
reported coordination systems. In addition, the 
following points should be noted. 
     The system remains robust under changing 
circumstances of resources even for large resource 
numbers. The system automatically includes 
different scales of temporal dependency through the 
amalgamation of energy consumption plans. 

   
Fig. 4. 100 resource agents satisfy the cap imposed 

by the broker agent within 1 minute (left panel 
indicates the time that the cap was set). 
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