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Abstract: This paper investigates the application of the lattice Boltzmann model to non-Newtonian flow simula-
tions in the mixing section of a screw extruder. The non-Newtonian power law model and its implementation into
the lattice Boltzmann model are described. Simulation results are presented for a shear thinning fluid. The results
show the suitability of the lattice Botlzmann model for performing non-Newtonian simulations of this type. Sig-
nificant differences are observed between the flow pattern for the shear thinning fluid considered and a Newtonian
fluid. This demonstrates the importance of considering the non-Newtonian nature of the fluid in screw extruder
simulations.
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1 Introduction

A single-screw extruder is commonly used in poly-
mer processing and its performance is known to con-
siderably influence the quality and morphology of the
final product. For this reason the flow field in the
mixing section has been studied by a number of au-
thors to gain a better understanding of the process.
Yao et al. [1, 2] performed simulations using a fi-
nite difference method (FDM) which were found to
compare favourably with a visualization experiment
involving the flow of high viscosity corn syrup in a
rectangular cavity with a moving top boundary. Fur-
ther work was performed by Horiguchi et al. [3] us-
ing the lattice gas method (LGM). Their simulations
compared favourably with the FDM simulations, visu-
alisation experiments and theory; however a number
of small differences were also observed. In particu-
lar a small circulation was observed in the bottom left
and right corners of the LGM simulations; whereas
no circulation is evident in the FDM results. Com-
parison with theory indicated that the LGM produced
a more accurate representation of the flow field rel-
ative to the FDM, however a small discrepancy was
still observed. Simulations using the lattice Boltz-
mann model (LBM) were performed by Buick and
Cosgrove [4]. The LBM has developed from the LGM
and was shown to simulate the flow in the single-
screw extruder more accurately and more efficiently
than the LGM. Another feature of the LBM is that it is

suitable for simulating a non-Newtonian fluid. It has
been shown that a non-Newtonian fluid can be simu-
lated with second order accuracy using the LBM with
a non-Newtonian viscosity described by a power law
model [5].

2 The Lattice Boltzmann Model
The lattice Boltzmann method [6] has recently been
developed as an alternative method for simulating a
range of fluid flows. LBM simulations are performed
on a regular grid defined by

�
directional vectors ���

for �����
	��	�������	 ��� � . At each site, � , each link
direction, ��� , has an associated distribution function,� ������	���� . The distribution functions interact on the lat-
tice by streaming from one site to a neighbouring site
in each time step and by undergoing collisions which
are represented by the relaxation of the distribution
functions toward their equilibrium. Here we use the
D2Q9 lattice which is a two-dimensional lattice with
9 link directions: ���������
	 �!�"	

�#�$� %!&('*)�%,+ - ��� � �.�0/1	 ) 2435%,+ - ��� � �.�0/6/
for � = 1, 2, 3, 4 and�#�$�87 - %*&('*)�% + - ��� � �.�,9 + : /;	 ) 2<35% + - ��� � �.�,9 + : /=/
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for � = 5, 6, 7, 8, see Figure 1.

e

eee

e

e e e

e 1

2

3

56

7 8

0

4

Figure 1: Lattice for the D2Q9 model.

The evolution of the distribution functions on the
lattice is governed by the discrete Boltzmann equation
[6]: � � ��� 9 � � 	�� 9 �.� � � � ����	�� �=� � � ����	�� �"� (1)

The left-hand side of equation (1) represents the
streaming of the distribution functions and the right-
hand-side is the relaxation collision operator [6, 7]:� �$� � �� � � � ����	�� � � ������ ����	�� �	� 	 (2)

where the equilibrium distribution function,
� ���� is

determined by a local function of the fluid density,
 ��� � � � and velocity, ������ � � � � � ��� 
 , [8]������ ����	�� � ��� � 
 � �,9���#���� 9 �- ���#���� ��� � � - ���� (3)

where ��� � 4/9, � � � 1/9 for � � 1,2,3,4 and � � �
1/36 for � � 5,6,7,8. The relaxation time � is related
to the kinematic viscosity � by

� �
- � � �� � (4)

The LBM reproduces the Navier stokes equation
in the nearly incompressible limit and has been shown
to be second order accurate in the body of the fluid [6].

2.1 Non-Newtonian Simulations
A non-Newtonian fluid is one where the viscosity
is not constant. In such fluids the apparent viscos-
ity can vary with, for example, shear, temperature or

time. Here we will consider only shear dependent
non-Newtonian fluids. A dialant or shear thickening
fluids has an apparent viscosity which increases with
increasing strain, for example corn starch, clay slur-
ries and certain surfactants. A psudoplastic or shear
thinning fluid has an apparent viscosity which de-
creases with increasing shear, for example paint and
blood [9].

To simulate a shear dependent non-Newtonian
fluid, it is necessary to determine the shear at each
point in the simulation. This would normally be done
by calculating the strain rate tensor:���! � �- �#"  �$ � 9%" � $& � 	 (5)

where here ' , (*),+.- 	�/10 . For the LBM, the strain
rate tensor can be determined locally as [10]���! � � �- �32 � �54!���� �!� � � �  	 (6)

where
�54!���� � � � � ������ . Thus the fluid shear can be de-

termined without significant extra computation. The
shear rate, 67 is then calculated as

67 � -98 : ;�; 	 (7)

where

: ;<; is the second invariant of the strain rate
tensor: : ;�; � =

2�?>  A@�B ���! C���! (8)

where here D8� -
since we are working in two-

dimensions.
Here the apparent viscosity is determined by the

power law model [9, 11, 12, 13, 14]:

�,��67 � �FEGIH 67JH 4�K B 	 (9)

where EG and L are parameters that are determined by
fitting a curve of the form of equation (9) to physical
viscometric data.

The parameter L determines the response of the
fluid to changes in shear rate, for

L M � 	 the fluid is shear thinning,

L � � 	 the fluid is Newtonian, and for

L N � 	 the fluid is shear thickening.

The non-Newtonian nature of the fluid is modelled by
determining the apparent kinematic viscosity �,�O67 � us-
ing equations (6)-(9). The relaxation time, � , corre-
sponding to the apparent viscosity is then determined
at each grid point by inverting equation (4).
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Figure 2: Flow pattern in the mixing section for a
shear thinning fluid with L = 0.5 (a) shows the mag-
nitude of the dimensionless velocity with streamlines
calculated from the flow and (b) the vector field.

Equation (9) can be non-dimensionalised and a
dimensionless number analogous to the Reynold’s
number can be defined as

������� � � � KC4	� 4EG (10)

where EG and L are the power law parameters and
�

and
�

are characteristic velocity and length scales re-
spectfully.

2.2 Simulations
Simulations of a single screw extractor were per-
formed using the LBM for a power-law non-
Newtonian shear thinning fluid. If the simulation is
performed in a frame of reference moving with the
rotating screw, the problem reduces to that of a cav-
ity flow with one moving wall and three stationary
walls. The velocity can then be separated into a two-
dimensional cross-section component and a stream-
wise component. It is the cross-sectional component,
perpendicular to the spiral direction which is consid-
ered here. A computational grid of height 
 and length
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Figure 3: Flow pattern in the mixing section for a
shear thinning fluid with L = 0.75 a) shows the mag-
nitude of the dimensionless velocity with streamlines
calculated from the flow and (b) the vector field.

D was simulated with the top wall at / ��
 moving
with velocity � $ �	 �!� and all the other walls station-
ary. The results are presented in terms of the nor-
malised positions -�� � -��
 , /�� ��/ �
 and velocities,� $ � 	������ ��� $ � $ � 	��9� $ � � .
3 Results and Discussion
Figures 2 and 3 shows the results of simulations using
power law models with L = 0.5 and L = 0.75 respec-
tively (that is for shear thinning fluids). Both fluids
show the same basic flow pattern as was observed for a
Newtonian fluid [4]. However, both flow differ signif-
icantly with respect to each other and also with respect
to the Newtonian case [4]. The changing flow patterns
can most easily be characterised in terms of the / posi-
tion where the horizontal velocity,

$
is zero. Compar-

ing Figures 2 and 3 we observe that the region of zero
horizontal velocity is closer to the moving top bound-
ary for L = 0.5. Thus the region of flow in the same
direction as the moving boundary is compressed and
the region of reverse flow is increased for the lower
value of L (and the increased non-Newtonian nature of
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the fluid). The same trend is observed when compar-
ing Figure 3 to the results for a non-Newtonian fluid
[4]. The results demonstrate the ability of the LBM
to simulate non-Newtonian flows in a screw extruder.
Further they indicate that the flow pattern is dependent
on the non-Newtonian nature of the fluid and thus that
the correct non-Newtonian parameters should be used
for the fluid being simulated. Further work is required
to investigate the extend of this dependence for com-
mon substances and screw extruder geometries.

4 Conclusion

The results demonstrate the suitability of the lattice
Boltzmann model for simulating flows involving non-
Newtonian fluids in the mixing section of a screw ex-
truder. Results were obtained for a shear thinning
fluid which varied significantly from the results for a
Newtonian fluid. This indicates that it is important to
correctly model the non-Newtonian nature of a fluid
when simulating flow in a screw extruder.
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