
A Simple Monte-Carlo Method for Estimating the Continuous-State
Two-Terminal Network Reliability at Required Demand Level

WEI-CHANG YEH

Department of Industrial Engineering and Management Engineering
National Tsing Hua University
P.O. Box 24-60, Hsin-Chu, 300

TAIWAN

Abstract: - The reliability at required demand level d (M2Rd) is usually selected as the most important index of
two-terminal multi-state networks (MSNs) whose arcs have independent, discrete, limited and multi-valued
random capacities. To evaluate M2Rd is a NP-hard problem and is too costly to obtain through traditional
techniques. Up to now, only one Monte-Carlo Simulation (RCMCS) is proposed to evaluate M2Rd. Moreover,
RCMCS not only requires to overcome NP-hard problems to know all minimal multi-state cuts (d-MCs) in
advance, but also its replications all need an exponential number of comparisons. A simple polynomial-time
Monte-Carlo Simulation (YehMCS) is proposed in this article to estimate M2Rd without finding any d-MCs.
YehMCS can also solve the reliability (C2Rd) for the continue-state networks (CSN) which is a novel generation
of MSN. The estimators of YehMCS are compared with RCMCS and exact solutions. The analysis indicates that
YehMCS is more practical, efficient and effective for most cases from the proposed experiments.

Key-Words: - Reliability, Binary/Multi/Continuous-State Network, Monte Carlo Method (MCS), Minimal
Path/Cut Sets (MPs/MCs), d-MP/d-MC, NP-hard

1 Introduction
In recent years, network reliability theory has been
applied extensively in many real-world systems such
as oil/gas production systems [1], computer and
communication systems [2,3], power transmission
and distribution systems [4], transportation systems
[5], etc. System reliability thus plays important roles
in our modern society. The reliability is
recommended to be measured and evaluated through
performances of the systems which can be modeled
as stochastic networks or into fault trees first.

Each arc of a binary-state network (BSN) has
only operated or failed two states [1-10]. The BSN
reliability evaluation approaches exploit a variety of
tools for system modeling and reliability index
calculation. Among the most popular tools are
network-based algorithms founded in terms of either
minimal cuts (MCs) or MPs [5,7-18]. A MP/MC is a
path/cut set such that if any edge is removed from this
path/cut set, then the remaining set is no longer a
path/cut set. However, both the problems in finding
all MCs/MPs and computing the exact reliability in
terms of the known MCs/MPs are also NP-hard.
Numerous Monte Carlo Methods (MCSs) have been
developed for relatively large BSN reliability
analysis [21-23].

In MSNs, each arc has several possible
independent, limited and discrete capacities and may

fail [11-19]. Hence, MSNs are more practical and
reasonable than BSNs in many real-life situations
[11-19]. For example, Figure 1 is a a multi-state
network (also called the bridge network) with
V={s,t,a,b}, E={e1,e2,e3,e4,e5,e6}, and Figure 2 is the
network induced by X=(2,2,1,1,1,1) from Figure 1. If
each arc of Figure 1 has only operative or failed two
states, then it is a binary network. Otherwise, it is a
multi-state network, e.g. the (capacity) states of e1 are
0, 1, 2, and 3.

s t

a

b

W(e1)=3 W(e2)=2

W(e3)=1

W(e5)=1 W(e6)=2

W(e4)=1

Fig 1. The bridge network

s t

a

b

x1=2 x2=2

x3=1

x4=1 x6=1

x4=1

Fig 2. The network induced by (2,2,1,1,1,1) from Fig
1.

Analysis of BSNs extends to MSNs has already
become a popular subject in the reliability problem.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 164

The two-terminal MSNs reliability at required
demand level d (M2Rd) is the probability that a
demand of d units can be transmitted from the source
to sink nodes through multi-state arcs. Generally,
there are four main steps behind the tradition
techniques for evaluating the M2Rd as follows:
1. Find all MPs/MCs by treating the arc state to be

binary.
2. Transfer MPs/MCs to d-MP/d-MC candidates

using a time-consuming and very burdensome
Implicit Algorithm. A d-MP/d-MC candidate
X=(x1, x2, …, x|E|) is a system vector, where xi
denotes the (current) capacity of the ith arc and |E|
is the arc number . If X is a d-MC candidate, then

∑
=

||

1

E

i
ix =d. If X is a d-MP candidate, then the

maximal flow from source to sink nodes is equal
to d under assumption that xi denotes the maximal
capacity of the ith arc for all i.

3. Verify all d-MP/d-MC candidates to find all (real)
d-MPs/d-MCs.

4. Compute the M2Rd in terms of d-MPs/d-MCs
using some special and complicate method, e.g.
the inclusion-exclusion method.

All of the four steps are NP-hard problems [12-19];
i.e. M2Rd is NP-hard. Besides, the value of d needs to
be a natural (nonnegative integer) number; otherwise
the number of d-MCs/d-MPs is infinite. Therefore,
the lack of generality limits the practical use of this
model. MCS has been effectively used for analyzing
relatively large BSN. However, the MCS has been
underutilized for approximating the M2Rd to reduce
the computational burdens [20]. Nevertheless, for the
M2Rd problem, the best-known MCS (RCMCS)
proposed by [20] needs to overcome the above first
three NP-hard problems to find all the d-MCs and
only for natural d. The efficiency of the simulation
methods is an important measure of evaluation. The
need for a more efficient, practical and intuitive MCS
to evaluate M2Rd for any d>0 without knowing
MP/MC/d-MP/d-MC in advance thus arises.

The main focus of this study is to develop a MCS
for estimating the M2Rd to completely overcome four
NP-hard obstacles and the limitation of d discussed
above. We also extend the MSN to CSN such that
arcs have independent, continuous, bounded and
random capacities, and using the proposed MSN to
solve the two-terminal CSNs reliability at required
demand level d (C2Rd), where d>0 is unnecessary to
be a natural number.

MSN fails to characterize the actual system
reliability behavior, which is a continuous-state. The
CSN is a novel generation of MSN and is first

proposed in the literature. To the author’s best
knowledge, YehMSC is also a new technique to
evaluate M2Rd and C2Rd. The CSN is more suitable
than MSN when events/states are continuous, and
more difficult to evaluate C2Rd than to evaluate
M2Rd. Furthermore, it is impossible to obtain C2Rd
through traditional techniques which all need d to be
a natural number. To show the efficiency and
effectiveness of YehMCS, YehMCS is compared with
RCMCS and the exact solution for the M2Rd problem.
The statistical properties of the proposed estimator
are also analyzed.

2 The CSN and the Proposed MCS

The capacity level of each arc is discrete in MSN,
e.g. w11=0, w12=3 and w13=6. However, the
capacity level of each arc is continuous in CSN, e.g.
w1k=lnk. In the traditional techniques, d must be a
natural number due to the multi-state characteristic of
arcs. Therefore, C2Rd can not be solved through the
four steps mentioned in Section 1. Thus, the tradition
techniques including RCMCS all fail to evaluate C2Rd.
YehMCS is a simple approach especially for the large
complex CSNs/MSNs. It is harder to evaluate C2Rd
than M2Rd. On the contrary, YehMCS bases on the
max-flow algorithm only and is simpler than RCMCS
which depends on the complicated theory of the
d-MC. The main idea of the YehMCS is very simple: a
repletion is successful if the max-flow in G(V, E, X)
is not less than d, where X is generated using a
sequence of random numbers.

The max-flow problem is one of the core models
of the network analysis. It has been well-researched
since 1960, and it can be found in all textbooks
related to Graph theory and/or Operations research.
Ford and Fulkerson were the first to study the
max-flow problem. Currently, the fastest known
max-flow algorithm independently developed by
King, Rao and Tarjan [24] and by Phillips and
Westbrook [25] run in O(|V|⋅|E|⋅ ||log

||log||
|| V
VV

E).

However, the fastest known max-flow algorithm
requires some sophisticated data structure techniques
[26]. Therefore, the simplest algorithm proposed by
Ford and Fulkerson and revised in [27] with time
complexity O(|V|⋅|E|2) was adapted in YehMCS (see the
STEPs 2-5 in YehMCS below). The basic idea of the
Ford and Fulkerson approach is: find a s-t path, send
flows via this path, update the arc capacities in this
path, and repeat the above procedures until no s-t
path exists. The revised Ford and Fulkerson approach
is modified and emerged in the main calculation
procedure of YehMCS. However, if the amount of
flows sent from nodes s to t is not less than d then the

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 165

repletion is halted without going further to find the
max-flow. The steps of YehMCS to estimate the
C2Rd/M2Rd without knowing d-MPs/d-MCs for all
d>0 are given as follows:
0. Let r=1 and n=0.
1. Let d*=0, and generate a random number, say pj,

from an uniform (0,1) distribution, let xj=wjk if
pjk≤pj<pj,k+1 for all j=1,2,…,|E|.

2. Find a s-t path P*∈G(V,E,X) such that X(e)>0 for
all e∈P*. If no s-t path exists, go to STEP 6.

3. Let δ=Min {X(e) | for all e∈P*}, and d*=d*+δ.
4. If d*≥d, then let n=n+1 and go to STEP 6.
5. Let X(e)=X(e)−δ, X(e*)=X(e*)+δ and go to STEP

2, where e* with the opposite direction of e for all
e∈P*.

6. If r=m, then let R#=n/m and halt. Otherwise, let
r=r+1 and go to STEP 1.

STEPs 2-5 are the main calculation procedure in

YehMCS and the time complexity is O(|V|⋅|E|2) only.
These STEPs can be improved furthermore if fastest
known max-flow algorithms are adapted. Therefore,
each replication can be executed in polynomial time,
and it is much better than that of RCMCS which need
an exponential time for each replication. Thus,
YehMCS is simpler and more efficient than RCMCS
according to the time complexity for each replication
even without considering that RCMCS needs to know
all d-MCs in advance. The statistical properties of the
estimator obtained from YehMCS are analyzed as
follows:
Theorem 1. The estimated reliability value R

#

obtained from YehMCS is an unbiased and consistent
estimator of the exact reliability R. Its variance is
given by R[1−R]/m, where m is the replication
number.
Theorem 2. If the relative error ε and the confidence
interval (1−α)% are given, then the total number of
replications of the simulation must be taken at least

m≥ 2

2

2
2/

ε
α

Z
.

Obvously, YehMCS is more efficient than RCMCS no

matter all d-MCs are known in advance as disscussed
before. However, The estimator obtained from either
of YehMCS or MCMCS is unbiased and consistent of the
exact reliability R with the same variance and is given
by R[1-R]/m. Therefore, four bench examples with 13
distinctive cases are given to illustrate and validate
YehMCS, and compare the estimator quality obtained
from YehMCS with the estimator quality obtained
from RCMCS.

3 Performance and Comparisons
To investigate the effectiveness and efficiency of
YehMCS, four bench examples are considered. The
BSN versions of these examples are frequently used
as illustrative examples in the BSN reliabilities.
Example 1 is called the bridge network (see Figure 1)
with 4 nodes and 6 arcs. Example 2 is called the
ARPA network (see Figure 3) with 5 nodes and 11
arcs. Example 3 is a median network (see Figure 4)
with 12 nodes and 21 arcs with 110 MCs. These three
examples are MSNs presented here to display the
simplicity of YehMCS to estimate M2Rd without
finding all d-MCs [20]. Example 4 is a relatively
larger CSN (see Figure 5) with 36 nodes, 57 arcs and
34241 MCs. It is utilized to demonstrate the ability of
YehMCS to evaluate C2Rd. Note that the application of
RCMCS for this size of network is an inefficient and
burdensome task even example 4 is a BSN.

s t

1
4

2

3 5

6

7
8

9

Figure 3. The ARPA network for Example 2

s

1

4

2

3

5

6

7

8

9

11
13

12

10
15

14

19 20

16

18

17 t

Figure 4. The network for Example 3

3
×

12

s

t
Figure 5. The network for Example 4

The required demand units (i.e. d) are 3, 10, and 5

for Examples 1-3, respectively [20]. All of the above
information is obtained from [20] to get a fair
comparison for the M2Rd problem. In example 4,
suppose that the reliability of each arc has an
exponential distribution with a mean reliability of 1/λ,
i.e. R(xi≤τ)=1−e-λτ for all i. The required demand
units are 0.2, 0.4, …, 3.0 and the parameter λ are 0.1,
0.2, …, 1.0 for Example 4.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 166

YehMCS was coded with C++ and run on a Pentium 3
notebook with 1GHz to make comparisons at the
same basis with RCMCS. The running time unit was
the second. The comparisons between YehMCS and
RCMCS for the experiment results obtained from the
three examples are presented in Tables 1-4. Table 1
gives the exact reliability and its estimations obtained
by YehMCS and RCMCS, and also bounds obtained by
MESP and MLQ.

For each of the cases, results are obtained through
YehMCS and RCMCS, considering 50,000 runs. The
variance of R# listed in Table 1 is obtained using the
following formula:

Var[R#]=
number repetition totalthe

)1(## RR −
.

The absolute relative error showed in Table 2 is
based on the following equation:

Error[R#]=
d

d

R
RR || # −

.

Table 1. Approximation results
Ex Case Bounds YehMCS RCMCS
No
. No. R MESP MLQ R# 106Var[R#] R* 106Var[R*]

 1 .83099.824680 .824935.83059 2.81421 .83036 2.81725
 2 .67760.659283 .662031.67787 4.36725 .67674 4.37526
 3 .55374.519458 .531444.55385 4.94200 .55190 4.94613
 4 .49512.439720 .469800.49529 4.99956 .49366 4.99920
2 1 .91619.913941 .913999.91633 1.53339 .91542 1.54852
 2 .84439.836295 .836799.84417 2.63094 .84462 2.62474
 3 .71847.696673 .700827.71817 4.04804 .71862 4.04411
 4 .59907.556872 .572389.59907 4.80370 .60426 4.78260
3 1 .930707 .930728.93900 1.14558 .94692 1.00525
 2 .910461 .910462.91130 1.61665 .91200 1.60512
 3 .890943 .890967.89884 1.81853 .89992 1.80128
 4 .536264 .555777.66529 4.45358 .68354 4.32626

The quality of results are analyzed and considered

in Table 2. There is no exact reliability for both
Examples 3 and 4. Therefore, the corresponding
absolute relative errors result from both RCMCS and
YEHMCS related to Examples 3 and 4 all are not
including in Table 2.

Table 2. Results of the absolute relative error* (in
percentage) for Exs 1 and 2.

Example
No.

Case
No. YehMCS RCMCS MESP MLQ

1 1 .048135^.075813 2.7030742.297524
 2 .039994^.126771 6.1901454.025572
 3 .020768^.331386 11.1892075.113912
 4 .034335^.294878 5.2104403.041414

Average .035808^.207212 2.7030742.297524
2 1 .015499^.083826 0.2452550.238925
 2 .026054^.027239 0.9586800.898992
 3 .041199 .021435^ 3.0332682.455092
 4 .000167^.866511 7.0437634.453577

Average .020730^.249752 2.8202422.011646
^: the best among 4 methods.

For testing the efficiency of both simulation
approaches, the running CPU times have been
recorded and shown in Table 3. The running CPU
times of RCMCS listed in Table 3 do not include the
exponential running time to obtain all d-MCs.
Moreover, RCMCS is impossible to estimate C2Rd, its
running CPU time for Example 4 is not available.

Table 3. CPU time (in sec)
Example No. Case No. YehMCS RCMCS

*
1 1 .160 .19
 2 .160 .17
 3 .128 .18
 4 .146 .16

2 1 .192 .56
 2 .256 .54
 3 .240 .52
 4 .272 .47

3 1 .536 23.994
 2 .457 23.053
 3 .558 22.762
 4 .727 17.445

* not including the exponential running time to obtain
all d-MCs.

By the above experiments, we showed that YehMCS

for M2Rd is superior to RCMCS in the estimator
qualities. In Table 2, the absolute errors of estimators
obtained from YehMCS are much less than that
obtained from RCMCS in Examples 1 and 2 (except
Case 3 of Example 2). The average simulation
absolute error is also better than that obtained from
RCMCS in Examples 1 and 2. Therefore, YehMCS is
more effective than RCMCS. YehMCS is also more
efficient than the RCMCS which not yet includes the
exponential time of calculations to search for d-MCs
in advance (see Table 3). It is more evidence that the
running time of RCMCS is increasing more than 40
times from Examples 2 to 3 while the node number
and arc number both are increasing less than 2.5
times only.

0.82999
0.83019
0.83039
0.83059
0.83079
0.83099
0.83119
0.83139
0.83159
0.83179
0.83199

10000 20000 30000 40000 50000
Simulation Number

R
e
l
i
a
b
i
l
i
t
y

Fig 6a. The convergence of the Case 1 of Ex 1

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 167

0.67660
0.67680
0.67700
0.67720
0.67740
0.67760
0.67780
0.67800
0.67820
0.67840
0.67860

10000 20000 30000 40000 50000
Simulation Number

R
e
l
i
a
b
i
l
i
t
y

Fig 6b. The convergence of the Case 2 of Ex 1

0.55274
0.55294
0.55314
0.55334
0.55354
0.55374
0.55394
0.55414
0.55434
0.55454
0.55474

10000 20000 30000 40000 50000
Simulation Number

R
e
l
i
a
b
i
l
i
t
y

Fig 6c. The convergence of the Case 3 of Ex 1

0.49412
0.49432
0.49452
0.49472
0.49492
0.49512
0.49532
0.49552
0.49572
0.49592
0.49612

10000 20000 30000 40000 50000
Simulation Number

R
e
l
i
a
b
i
l
i
t
y

Figure 6d. The convergence of the Case 4 of Ex 1

0.91519
0.91539
0.91559
0.91579
0.91599
0.91619
0.91639
0.91659
0.91679
0.91699
0.91719

10000 20000 30000 40000 50000
Simulation Number

R
e
l
i
a
b
i
l
i
t
y

Fig 7a. The convergence of the Case 1 of Ex 2

0.84339
0.84359
0.84379
0.84399
0.84419
0.84439
0.84459
0.84479
0.84499
0.84519
0.84539

10000 20000 30000 40000 50000
Simulation Number

R
e
l
i
a
b
i
l
i
t
y

Fig 7b. The convergence of the Case 2 of Ex 2

0.71747
0.71767
0.71787
0.71807
0.71827
0.71847
0.71867
0.71887
0.71907
0.71927
0.71947

10000 20000 30000 40000 50000
Simulation Number

R
e
l
i
a
b
i
l
i
t
y

Fig 7c. The convergence of the Case 3 of Ex 2

0.59807
0.59827
0.59847
0.59867
0.59887
0.59907
0.59927
0.59947
0.59967
0.59987
0.60007

10000 20000 30000 40000 50000
Simulation Number

R
e
l
i
a
b
i
l
i
t
y

Fig 7d. The convergence of the Case 4 of Ex 2

0.93800
0.93820
0.93840
0.93860
0.93880
0.93900
0.93920
0.93940
0.93960
0.93980
0.94000

10000 20000 30000 40000 50000
Simulation Number

R
e
l
i
a
b
i
l
i
t
y

Fig 8a. The convergence of the Case 1 of Ex 3

0.91030
0.91050
0.91070
0.91090
0.91110
0.91130
0.91150
0.91170
0.91190
0.91210
0.91230

10000 20000 30000 40000 50000
Simulation Number

R
e
l
i
a
b
i
l
i
t
y

Fig 8b. The convergence of the Case 2 of Ex 3

0.89784
0.89804
0.89824
0.89844
0.89864
0.89884
0.89904
0.89924
0.89944
0.89964
0.89984

10000 20000 30000 40000 50000
Simulation Number

R
e
l
i
a
b
i
l
i
t
y

Fig 8c. The convergence of the Case 3 of Ex 3

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 168

0.66429
0.66449
0.66469
0.66489
0.66509
0.66529
0.66549
0.66569
0.66589
0.66609
0.66629

10000 20000 30000 40000 50000
Simulation Number

R
e
l
i
a
b
i
l
i
t
y

Fig 8d. The convergence of the Case 4 of Ex 3

Figures 6-8 demonstrate the trend of convergence

of the estimator obtained from YehMCS to provide an
explicit perspective of how the approximations
deviate at each run. These are made by the starting
number of simulation runs at 500 and then later
incrementing this number by 500 and conducting an
independent simulation with 100 runs. The vertical
axis represents the reliability values which are
between the exact reliability+0.001 and the exact
reliability-0.001. As pictured in the graphs, the
estimators obtained from the proposed MCS
converge rapidly.

Finally, the CPU running time for Example 4 using
YehMCS is less than 11 seconds from Table 4. No
existing method can evaluate or even give the
lower/upper-bounds for the C2Rd problem. Therefore,
the estimator obtained from YehMCS provides
valuable information for larger complex
MSNs/CSNs.

Table 4. CPU time (in sec) for Example 4 under
different combinations of α and d
 α
 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

.2 0.891 0.875 1.047 1.14 1.469 1.594 1.656 2.016 2.187 2.344

.4 0.891 1.203 1.593 1.922 2.25 2.797 3.172 3.438 3.921 4.532

.6 1.031 1.547 1.937 2.797 3.531 3.907 4.625 5.484 5.641 6.562

.8 1.25 1.906 2.61 3.406 4.141 5.672 6.5 6.359 6.937 7.313
1 1.344 2.281 3.328 4.516 5.39 7.813 6.969 7.656 8.312 8.266

1.2 1.516 2.796 3.938 5.312 6.172 6.797 7.469 12.141 8.89 8.578
1.4 1.985 3.14 4.86 5.718 6.922 7.25 7.813 8.094 8.718 9.047
1.6 1.969 3.672 4.937 6.125 6.969 8.438 8.39 8.11 8.171 8.625
1.8 2.079 3.937 6.594 7.062 7.672 8.235 8.234 9.312 8.391 8.859
2 2.125 4.36 6.406 7.594 7.781 9.219 8.937 8.125 9.157 8.625

2.2 2.5 4.531 6.125 7.359 8.203 9.219 8.141 8.797 8.031 8.656
2.4 2.766 5.328 6.906 7.656 8.094 8.109 7.938 9 8.672 8.922
2.6 2.875 6.093 7.172 8.172 9.516 8.453 9.156 8.703 9.813 9.469
2.8 3.187 6.047 7.641 7.75 8.875 8.515 8.844 8.984 8.516 10.109

d

3 3.438 5.703 8.594 8.625 8.875 8.172 9.609 8.453 8.516 9.812

4 Conclusion
In this study, a new MCS called YehMCS is developed
to evaluate the reliability of a novel generalized
network called CSN. By extending the multi-state to
continuous-state, CSN is a novel generation of MSN.

It is more practical in many real-life situations, and
existing method can not figure out its reliability. The
exact computation of the binary/multi/continue-state
network reliability is NP-hard [19]. Simulation is a
valid approach to obtain fairly accurate
approximations to the actual reliability in a reduced
computational time. As we pointed out in Section 3,
there are two major weak points in RCMCS:
(1) all d-MCs need to be known in advance.
Therefore,

 RCMCS is more complicated and tedious using
the d-MC concept.

 RCMCS needs special techniques to overcome
the NP-hard problem to obtain all d-MCs
before it can be implemented.

 RCMCS fails to estimate M2Rd if any d-MC is
unknown.

 If d is changed, RCMCS is inapplicable before
re-exploring entire new d-MCs.

 d can not be any positive number, otherwise
no traditional techniques can find out all
d-MCs.

 RCMCS is not suitable in the CSN where d can
be any positive number.

(2) RCMCS requires to solve another NP-hard to
decide whether a replication is successful.

YehMCS is proposed to overcome all the above
problems occurring in RCMCS to meet the need for a
more practical and efficient MCS. The proposed
YehMCS improves RCMCS in the following six ways:
(1) based only on the max-flow (the basic core in
Graph Theory) instead of using the complicated
concepts about the MC/MP/d-MP/d-MC, YehMCS is
simpler, (2) no need to know all d-MCs in advance,
YehMCS is more practical and reasonable (3) since d
can be any positive number, YehMCS is more useful
and flexible and also can evaluate C2Rd, (4) without
an exponential number of comparisons, YehMCS is
more efficient and reduces computational effort, (5)
with better estimator quality as evidenced by the
experiment results in Section 5, YehMCS is more
effective, (6) allowing the change of d, YehMCS is also
ideally suited to perform the sensitivity analysis to
investigate the effect on the reliability if d takes on
other possible values. Through the above discussion,
the proposed YehMCS is simpler, more practical,
reasonable, useful, flexible, efficient and effective
than RCMCS.

References:
[1] T. Aven, “Availability evaluation of oil/gas

production and transportation systems”,

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 169

Reliability Engineering. Vol. 18, 1987, pp.
35-44.

[2] K.K. Aggarwal et al., “A simple method for
reliability evaluation of a communication
system”, IEEE Transactions on Communication,
COM-23, 1975, pp. 563-565.

[3] M.A. Samad, “An efficient algorithm for
simultaneously deducing MPs as well as cuts of
a communication network”, Microelectronic
Reliability, Vol. 27, 1987, pp. 437-441.

[4] W.J. Ke and S.D. Wang, “Reliability evaluation
for distributed computing networks with
imperfect nodes”, IEEE Transactions on
Reliability, Vol. 46, 1997, pp. 342-349.

[5] P. Doulliez and E. Jalnoulle, “Transportation
network with random arc capacities”, RAIRO,
Rech. Operations Research, Vol. 3, 1972, pp.
45-60.

[6] J. Esary and F. Proschan, “Coherent structures of
non-identical components”, Technometrics, Vol.
5, No. 2, 1963, pp. 191-209.

[7] T. Jin and D. Coit, “Network reliability
estimates using linear and quadratic unreliability
of minimal cuts”, Reliability Engineering &
System Safety, Vol. 82, No. 1, 2003, pp.41-8.

[8] W.C. Yeh, “Search for MC in modified
networks”, Computers & Operations Research,
Vol. 28, No. 2, 2001, pp. 177-184.

[9] W.C. Yeh, “Search for Minimal Paths in
Modified Networks”, Reliability Engineering &
System Safety, Vol. 75, No. 3, 2002/3, pp.
389-395.

[10] T. Aven, “Some considerations on reliability
theory and its applications”, Reliability
Engineering and System Safety, Vol. 21, 1988,
pp. 215-223.

[11] A. Lisnianski and G. Levitin, “Multi-state
system reliability. Assessment, optimization and
applications”, Singapore: World Scientific,
2003.

[12] W.C. Yeh, “A simple algorithm to search for all
d-MPs with unreliable nodes”, Reliability
Engineering & System Safety, Vol. 73, No. 1,
2001, pp. 49-54.

[13] W.C. Yeh, “A Simple Method to Verify All
d-Minimal Path Candidates of a Limited-Flow
Network and its Reliability”, International
Journal of Advanced Manufacturing Technology,
Vol. 20, No. 1, 2002/7, pp. 77-81.

[14] W.C. Yeh, “A simple approach to search for all
d-MCs of a limited-flow network”, Reliability
Engineering and System Safety, Vol. 71, No. 1,
2001, pp. 15-19.

[15] W.C. Yeh, “A simple MC-based algorithm for
evaluating reliability of stochastic-flow network

with unreliable nodes”, Reliability Engineering
& System Safety, Vol. 83, No. 1, 2004/1, pp
47-55.

[16] W.C. Yeh, “A New Approach to the d-MC
Problem”, Reliability Engineering & System
Safety, Vol. 77, No. 2, 2002/8, pp. 201-206.

[17] Y. Lin, “Using minimal cuts to evaluate the
system reliability of a stochastic-flow network
with failures at nodes and arcs”, Reliability
Engineering & System Safety, Vol. 75, 2002, pp.
41-6.

[18] Y. Lin, “A simple algorithm for reliability
evaluation of a stochastic- flow network with
node failure”, Operations Research, Vol. 28,
2001, pp. 1277-85.

[19] C.J. Colbourn, “The combinatorics of network
reliability”, Oxford University Press, New York,
1987.

[20] E.J. Ramirez-Marquez and D.W. Coit, “A
Monte-Carlo simulation approach for
approximating multi-state two-terminal
reliability”, Reliability Engineering & System
Safety, Vol.87, No.2, 2005, pp. 253-264.

[21] G.S. Fishman, “Monte Carlo – concepts,
algorithms, and applications”, New York:
Springer-Verlag, 1996.

[22] W.C. Yeh, “A new Monte Carlo method for
estimating network reliability”, Proceedings of
the 16th International Conference on Computers
and Industrial Engineering, Ashikaga, Japan;
1994.

[23] T.L. Landers, H.A. Taha, and C.L. King, “A
reliability simulation approach for use in the
design process”, IEEE Transactions on
Reliability, Vol. 40, 1991, pp. 177-18l.

[24] V. king, S. Rao, and R.E. Tarjan, “A faster
deterministic maximum flow algorithm”,
Journal Algorithms, Vol.17, No.3, 1994,
pp.447-474.

[25] S. Phillips and J. Westbrook, “Online load
balancing and network flow”, Proceeding of the
24th ACM Symposium on Theory of Computing,
1992, pp.402-411.

[26] J. Edmonds and R.M. Karp, “Theoretical
Improvements in Algorithm Efficiency for
Network Flow Problems”, Journal of ACM, Vol.
19, 1972, pp. 248-264.

[27] L.R. Ford Jr. and D.R. Fulkerson, “Flows in
Networks”, Princeton University Press, 1962.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 170

