
Design and Implementation of a Scalable Web Cluster System
Using a Light-Weight Cluster Control Protocol

IN HWAN DOH and SAM H. NOH

Department of Computer Engineering
Hongik University

Seoul 121-791
KOREA

Abstract: - The need for web services is constantly increasing, while the requirements for web services are getting
more and more complicated. Thus, web server systems with ever increasing performance are constantly in need.
To efficiently satiate this need, web cluster systems, which have been a topic of much research, have been
suggested due to its scalability. In this paper, we design and implement a scalable web cluster system using a
light-weight cluster control protocol on the IP layer in the Linux operating system. Experimental results illustrate
that our implementation of the web cluster system linearly improves performance as the server nodes increase. We
show that although the web cluster control protocol implemented on the IP layer does not support any reliable
mechanism, the problem related to packet loss or fault has little effect on the system performance.

Key-Words: - Web Cluster System, Web Server, Web Switch, Linux, Network Protocol

1 Introduction
With the continuous increase of Web users, the web
server not only executes lots of complicated programs,
but also contains web pages that include more and
more heavy embedded objects such as image, sound,
and movie clips. In this regard, web server systems
with ever increasing performance are constantly in
need. However, in order to address this need, it is not a
cost-effective solution to continually purchase a server
system that has ever more higher performance. As a
cost-effective solution to satiate this need, a web
cluster system has been suggested due to its
scalability.
 Although a web cluster system consists of several
system nodes, it gives an illusion of a single system.
One of the most important advantages of a web cluster
system is that it is easy to extend its performance. One
research goal related to web cluster systems is to
design and implement a scalable web cluster system
that linearly improves its performance as the number
of internal server nodes increase. Considerable
research has been conducted in an attempt to achieve
this goal [1].
 Generally, a conventional web cluster control
protocol is implemented on the TCP layer. This
control protocol can provide reliability in a web
cluster system when the control packet disappears or is
damaged. However, control protocols based on TCP
are generally complex and heavy because they

incorporate many complicated processing
mechanisms in order to deal with the several
exceptions that could possibly happen [2].
 Considering current advanced network
infrastructures, the ratio of packet loss or fault in LAN
is very low. Studies have shown that the growth of
network technology is around 2 times faster than that
of computer system technology [3]. Through this
study, the inference that packet loss or error will not be
a concern any more in the near future is persuasive. In
this respect, our goal is to explore the effect on system
performance when a web cluster system is
implemented on the IP layer, which does not support
any reliability for the control packet.
 If the web cluster system is implemented on the IP
layer, the only way to ensure control packet reliability
is to rely upon the retransmission mechanism of the
TCP connection that is established between a client
and the web cluster system. Even so, our experimental
results illustrate that the web cluster system based on
the IP layer shows scalable performance that is almost
identical to an ideal system.
 This paper describes the design, implementation
and performance of a web cluster system that uses a
Light-weight Cluster Control Protocol (LCCP)
implemented on the IP layer. The following section
reviews general approaches in implementing a web
cluster system. Section 3 describes our design of the
web cluster system. Section 4 presents a brief

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 419

description of the implementation of the web cluster
system in Linux. Section 5 presents experiments that
evaluate the performance, stability, and scalability of
our web cluster system. The final section summarizes
our work.

2 Related Work
Considerable studies have been conducted regarding
web cluster systems and they can be classified into 3
different categories. In the first category, the studies
consider the mechanisms used to construct and operate
web cluster systems. In the second category,
researchers consider developing algorithms that
balances loads among several server nodes in the web
cluster system [1]. In the last category, approaches to
overcome the overloaded state in the web cluster
system are considered [4]. In this section, we focus on
the first category as this is most relevant to the topic of
this paper.
 The architecture of a general web cluster system is
represented in Figure 1. A web cluster system consists
of a front-end server, which is commonly called the
web switch, and back-end servers. Web cluster
systems are divided into layer-4 or layer-7 web cluster
systems according to the information that is
considered by the front-end server when distributing
client requests to the server nodes. Web cluster
systems are also classified into one-way or two-way
architectures according to whether the front-end server
relays the packet flows between a client and a
back-end server in only one direction or in both
directions, respectively [1].
 The layer-4 web cluster system consists of a layer-4
web switch and back-end servers. The layer-4 web
switch forwards packets from clients to the back-end
server according to the destination IP address and the
port number of the packet. There are many packet
forwarding mechanisms in the layer-4 web switch
such as NAT (Network Address Translation) [5] and
IP Tunneling [6]. Currently, this type of layer-4 web
switch showing high performance is available in the
market [7, 8]. Furthermore, NAT and IP Tunneling

techniques are being provided as patches or built right
into the Linux kernel through the Linux Virtual Server
Project [9, 10].
 When layer-7 web cluster systems distribute the
packets from clients to the back-end servers, the
front-end server applies a content-aware distribution
algorithm while considering the IP address and port
number of the requested packet. TCP handoff [2] and
TCP splicing [11, 12, 13] are two of numerous
mechanisms that allow the front-end server to use
content-aware distribution algorithms. TCP splicing
adopts a two-way architecture, easily making the
front-end server a bottleneck. To relieve this issue, the
TCP handoff mechanism uses a one-way architecture,
but this mechanism still suffers from limited
scalability. Aron et al. resolve this problem by
dividing the front-end server's functionality into the
dispatcher that executes the layer-7 dispatching
algorithm and the distributor that operates the TCP
handoff mechanism [14]. The distributor is scattered
to all of the server nodes.

3 Design of the LCCP
In this section, we describe the architecture of the web
cluster system that our implementation is based on.
Then, we describe the design of a scalable
Light-weight Cluster Control Protocol (LCCP) that
controls the web cluster system.

3.1 Components
Figure 2 shows the architecture and internal
components of the web cluster system implemented in
this paper. We use the layer-7 web cluster system
design proposed by Aron et al. [14]. The web cluster
system consists of a layer-4 switch, a dispatcher, and
web server nodes that are internally composed of a
distributor and forwarder. Each component works as
follows.
 A layer-4 switch is an interface between external

F ro n t- en d
S e rve r

B a c k- e nd
S e rve r

B a c k- e nd
S e rve r

B a c k- e nd
S e rve r

B a c k- en d
S e rve r

C lie n t

C lie n t

C lie n t

C lie n t

Fig.1: Architecture of a general web cluster system

Fig.2: Architecture of Layer-7 web cluster system

Layer-4
Sw itch

Web Server

D istributor/
Forwarder

Web Server

D istributor/
Forwarder

Web Server

D istributor/
Forwarder

Web Server

C lient

C lient

C lient

C lient

D ispatcher

TCP packet flow

TCP forwarded packet flow

Distributor/
Forwarder

Layer-7 Web C luster System

Cluster control packet flow

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 420

web clients and the web cluster system. Basically, a
layer-4 switch passes SYN packets from web clients to
server nodes in the web cluster system. A TCP
connection is established between a client and the
server node that receives the SYN packet. To preserve
the TCP connection between the client and the server
node, the layer-4 switch forwards subsequent packets
to the server node which received the SYN packet. A
dispatcher decides which server node will actually
serve the web client request. This decision is based on
the content of the web request. A distributor manages
the TCP handoff mechanism [2], which hands off a
TCP connection from one server node to another.
Through the TCP handoff mechanism, it is possible to
pass along a TCP connection among internal server
nodes whenever the server originally connected to the
client differs from the server that actually has to serve
that client. A forwarder forwards subsequent packets
such as ACKs and FIN to the server node that actually
processes the web request, since the TCP handoff was
already occurred.

3.2 Light-weight Cluster Control Protocol
Internal nodes of the web cluster system need to
communicate with each other so that the web cluster
system gives an illusion of a single system. This
cluster communication mechanism is what controls
the web cluster system.
 The web cluster system proposed by Aron et al.
establishes a permanent TCP control connection
among all of the nodes during the initialization state
[14]. Through this TCP control connection, the nodes
of the web cluster system can pass along control
packets to each other. The web server system based on
HTTP/1.0 protocol usually needs to exchange 9 TCP
packets between the server and the client in order to
process a request. However, when the server that
initially establishes a TCP connection with the client is
different from the server that will serve the client, the
web cluster system has to exchange at least 12
additional packets in order to serve the request [14].
This additional overhead can not be ignored.
Furthermore, due to technological advances in
network infrastructure, the rate of packet loss is
extremely low in current Local Area Networks (LAN).
Thus, using a TCP protocol that has extensive code to
support reliable connections may be wasting
resources.
 In this respect, we analyze the performance
degradation suffered from packet loss or faults for a

web cluster system implemented on the IP layer when
deployed on current LAN infrastructure. To do so, we
design and implement a Light-weight Cluster Control
Protocol (LCCP) on the IP layer. Our experimental
analysis shows that an IP layer implementation to
support web cluster systems is indeed feasible and
efficient.
 Figure 3 depicts the web cluster control packet
using LCCP. This packet does not include the
transport layer protocol header such as the TCP header.
The header of the LCCP packet consists of only
essential information required for control of a web
cluster system. The details of the LCCP header are as
follows.

Receptor (32 bits): This field indicates which
component of the web cluster system has to process
the current LCCP packet received from the IP layer.
Command (32 bits): Through this field, the
component is able to identify what kind of mission has
to be fulfilled when the component receives the LCCP
packet. This field includes many kinds of tasks, for
instance, the initialization of each component, the
request or reply between the distributor and the
dispatcher, the request or reply related to the TCP
handoff mechanism, and so on.
Data (32 bits): This field includes the data indicated
by the 'Command' field. The value of this field will
vary according to the value of the 'Command' field.
Socket ID (96 bits): This field consists of four
different subfields; the client's IP address, the client's
port number, the server's IP address, and the server's
port number. When the current node is not the server
node that initially establishes the TCP connection with
the client, the current node can obtain the initial TCP
connection by exploiting these fields.
Handoff Information (90 bytes): When the server
that establishes the initial TCP connection with the
client is different from the server that actually
provides service to the client, the distributor has to

 Fig.3: LCCP packet header

Fram e
Header

IP
Header

LCC P
Header Payload

Receptor 32 bits

Com m and 32 bits

Data 32 bits

Socket ID source address 32 bits

Socket ID destination address 32 b its

Socket ID source port 16 b its Socket ID destination port 16 b its

Handoff In form ation

90 bytes

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 421

pass along the TCP connection information from one
server to another. In this case, the distributor creates
the LCCP packet whose 'Handoff Information' field
contains the TCP connection information needed to
support the TCP handoff mechanism.

4 Implementation in Linux
We implemented the web cluster system mentioned in
the previous section in Linux 2.4.20. In this section,
we briefly describe the implementation of LCCP.
 Figure 4 shows the position of the LCCP protocol
and their functions within the Linux network stack.
The left side of this figure involves functions
processed when the control packet arrives at the LCCP
layer; the right side functions are executed when
sending the LCCP packet. Due to the paper length
limitation, we omit the details of each of these
functions and only briefly mention the roles of these
functions.
 In Figure 4, lccp_rcv() and lccp_xmit() are both
interface functions for receiving and sending the
LCCP packet, respectively. Both sys_cluster_
init() in the sending part and initialize_

handler() in the receiving part initialize components
of the web cluster system. The function
lccp_forward() in the IP layer forwards the LCCP
packet. In the distributor, sock_def_disp_request()
and disp_sendmsg() are in charge of creating and
sending LCCP query packets to the dispatcher,
respectively, and dispatch_handler() processes the
reply packet for the query. The handoff_sendmsg()
and handoff_handler() functions execute the TCP
handoff mechanism in the distributor. In the
dispatcher, the function dispatch_handler()
executes the layer-7 content-aware load distribution
algorithm.

5 Performance Evaluation
In this section, we first explain the experimental setup
used to measure the performance of the web cluster
system. We then describe the performance of the
LCCP web cluster system from the viewpoint of
stability and scalability.

5.1 Experimental Setup
Table 1 describes the specification of the node systems
constituting the LCCP web cluster system and the
client systems generating web requests in our
experiments. Each of the 14 server nodes and
dispatcher has an Intel Pentium II 350MHz CPU and
64MB RAM. In order to easily saturate the capacity of
the web cluster system, 7 client systems with higher
performance than the others are used in the
experiments. All clients have 256MB RAM. Of these,
4 systems, 2 systems, and 1 system, respectively, use
an Intel Pentium IV 2.4GHz CPU, an Intel Pentium III
750MHz CPU, and an Intel Pentium IV 1.7GHz CPU.
All of these systems have a 3COM 100Mbps Ethernet
Card (3c59x-TX-M) and are connected to each other
through the NETGEAR Gigabit switching HUB with
CAT 5 STP LAN cables.
 The Apache web server is adopted as the web
server application operating on each server nodes [15].
In order to generate synthetic HTTP/1.0 web requests,
each client executes the SURGE program [16]. The
workload created by SURGE consists of 10,000 data
files of which the total size is 187MB and the average
size is 19KB. The minimum generated file size is 74
bytes and the maximum size is about 1.4MB. In this
workload, the patterns that clients request to a server
follow the Zipf-like distribution and the most popular
file among the 10,000 files is requested 100,000 times
when the client request made to the server is 490,000
times [17]. For the purpose of flooding the server with
requests, the SURGE program is modified to send a
HTTP request as soon as the reply for the previous
request is received.

ip_local_deliver

ip_rcv

lccp_rcv

lccp_forward

dispatch_
handler

handoff_
handler

initialize_
handler

disp_
request

disp_
reply

hoff_
request

hoff_
reply

lccp_xmit

ip_finish_output

sock_def_
disp_request

lccp_
sendmsg

sys_cluster
_init

cluster_initUser level

IP layer

LCCP layer disp_
sendmsg

hoff_
sendmsg

Receive Send

ip_lccp_xmit

Fig.4: Function call graph for the LCCP

NODE CPU RAM

Server Pentium II 350MHz 64M

Dispatcher Pentium II 350MHz 64M

Client Pentium IV 2.4GHz 256M

Client Pentium III 750MHz 256M

Client Pentium IV 1.7GHz 256M

NUM.

14

1

4

2

1

LAN CARD

3COM
100Mbps
Ethernet

Card

(3c59x-TX-M)

Table 1: System’s specification

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 422

5.2 Results
Since our intension is to estimate the stability and
scalability of the LCCP protocol, we simply adopt the
round-robin dispatching algorithm as this is one of the
simplest algorithms used for load distribution. In the
following experiments, we do not use a layer-4 switch
as we assume that a layer-4 switch is in front of the
web cluster system. However, it is not important
whether a layer-4 switch is included or not because the
layer-4 switch plays a simple role of relaying packets
from clients to servers or vice versa.

5.2.1 Stability
Prior to describing the scalability of the LCCP web
cluster system, we present the stability for our LCCP
protocol implementation. To do this, we compare the
LCCP web cluster system with an unmodified server
system. In this experiment, the LCCP web cluster
system is composed of only one server node that
internally executes the TCP handoff mechanism all the
time. The client floods HTTP requests to each of these
two different web server systems, increasing the
number of its SURGE threads from 10 to 200 in
increments of 10. The number is limited to 200 threads
as we found that one SURGE process executing 200
threads fully saturates a single web server node. In
order to obtain a stable result, the experiments are
conducted for 30 seconds of which the result data are
gathered from the middle 20 seconds. This evaluation
is repeated 10 times. Of these, we throw away the
minimum and maximum values and obtain the average.
Figure 5 shows these numbers.
 Figure 5 represents the number of TCP connections
serviced per second as the number of SURGE threads

increases by 10. From this figure, we observe that the
LCCP web cluster system performs comparably to the
unmodified Linux kernel. In the LCCP web cluster
system, the server node has to communicate with the
dispatcher and internally execute the TCP handoff
mechanism. Although the LCCP web cluster system
needs to process additional operations in order to serve
a web request, its performance is similar to the
unmodified web server system performance. From this
result, we can verify that the LCCP web cluster system
which consists of only one server node stably operates
in a LAN environment even if the LCCP protocol does
not support any reliability mechanism for packet loss
or error.

5.2.2 Scalability
Important performance metrics for the web cluster
systems are scalability and capability, both measured
by the number of TCP connections processed per
second. In another experiment, we measured these two
metrics, by adding a server node to the LCCP web
cluster system one by one to upto 14 nodes. Each
server node receives HTTP/1.0 requests generated by
a SURGE process having 200 threads, so that the
LCCP web cluster system is fully overloaded by these
HTTP requests. The procedure for obtaining the result
data in this experiment is the same as that described in
Subsection 5.2.1. One client system can stably execute
2 SURGE processes with 200 threads, and each
SURGE process can fully saturate one web server
node. Considering this limitation and the 24 port
switching hub that we have, the maximum number of
server nodes, dispatcher, and client systems that can
be experimented with is 15, 1, and 8, respectively. Due

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Num of Servers

N
u
m
 o
f
T
C
P
 c
o
n
n
e
c
tio
n
s
(C
o
n
n
s/
se
c
)

Ideal sy s tem LCCP web clus ter sy s tem

Fig.6: Scalability and performance of LCCP web
cluster system as server node increase Fig.5: Stability of LCCP web cluster system

0

50

100

150

200

250

300

350

400

450

500

20 40 60 80 100 120 140 160 180 200

Num of Clients

N
u
m
 o
f
T
C
P
 c
o
n
n
e
c
ti
o
n
s
(C
o
n
n
s/
s)

Original Kernel LCCP Protocol

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 423

to the number of systems that is available to us, we
conduct this scalability experiment using 14 server
nodes, 1 dispatcher, and 7 client systems. We compare
the LCCP web cluster performance with the simplest
version of the web cluster system, which does not
support any load balancing mechanism. This system
consists of server systems that have an unmodified
Linux kernel, and each of these server systems are
directly connected to each other through the switching
hub. This system can directly service any client HTTP
request without requiring any internal communication
with other system components. Hence, this system
will result in the best layer-7 web cluster system
performance. Therefore, we will call this an ideal
system in this experiment.
 Figure 6 depicts the results that compare the LCCP
web cluster system performance with the ideal system
performance. The performance of the ideal system as
well as the LCCP web cluster system increases
linearly as the server node increases. Not only is the
system scalable, but we observe that the number of
TCP connections per second processed on the LCCP
web cluster system is as high as that of the ideal
system.
 The implication of these experimental results is
that the LCCP web cluster system can stably serve
overloaded web requests even though the LCCP
protocol does not support any reliability mechanism
for packet loss and/or error.

6 Conclusions
To identify the effect on the system performance when
a web cluster system is implemented on the IP layer,
we designed and implemented the LCCP web cluster
system on the IP layer in Linux.
 Experimental results show that the LCCP web
cluster system is scalable and that performance is as
high as that of an ideal system. Considering the current
advanced network infrastructure and our experimental
results, we conclude that although the web cluster
control protocol implemented on the IP layer does not
support any reliable mechanism, the problem related
to packet loss and/or error has little effect on the
system performance.

7 Acknowledgments
This work was supported by the Brain Korea 21
Project in 2006.

References:
[1] V. Cardellini, E. Casalicchio, M. Colajanni, and

P. S. Yu, The state of the art in locally distributed
Web-server systems, ACM Computing Surveys
(CSUR), Vol.34, No.2, 2001, pp.263-311.

[2] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P.
Druschel, W. Zwaenepoel, and E. Nahum,
Locality-aware Request Distribution in
Cluster-based Network Servers, In Proc. of the
8th International Conference on ASPLOS, 1998.

[3] G. Gilder, Fiber keeps its promise: Get ready.
Bandwidth will triple each year for the next 25,
Forbes, Vol.7, 1997.

[4] M. Andreolini and E. Casalicchio, A
Cluster-Based Web System Providing
Differentiated and Guaranteed Services, Cluster
Computing, Vol.7, No.1, 2004, pp.7-19.

[5] P. Srisuresh and K. Egevang, Traditional IP
Network Address Translator, RFC 3022, 2001.

[6] C. Perkins, IP encapsulation within IP, RFC 2003.
[7] Cisco Systems Inc., http://www.cisco.com.
[8] Netgear Inc., http://www.netgear.com.
[9] Linux Kernel Archives, http://www.kernel.org.
[10] The Linux Virtual Server Project, http://www.

linuxvirtualserver.org.
[11] D. Maltz and P. Bhagwat, Application layer proxy

performance using TCP splice, Tech. Rep. RC
21139, IBM T. J. W. Research Center, 1998.

[12] A. Cohen, S. Rangarajan, and H. Slye, On the
performance of TCP splicing for URL-aware
redirection, In Proc. of the 2nd USENIX
Symposium on Internet Technologies and
Systems, 1999.

[13] O. Spatscheck, J. S. Hansen, J. H. Hartman, and
L. L. Peterson, Optimizing TCP forwarder
per-formance, IEEE/ACM Trans. Networking,
Vol.8, No.2, 2000, pp.146-157.

[14] M. Aron, D. Sanders, P. Druschel, and W.
Zwaenepoel, Scalable Content-aware Request
Distribution in Cluster-based Network Servers, In
Proc. of the USENIX 2000 Annual Technical
Conference, 2000.

[15] The Apache Software Foundation, http://www.
apache.org.

[16] P. Barford and M. Crovella, Generating
Repre-sentative Web Workloads for Network and
Server Performance Evaluation, In Proc. of the
ACM SIGMETRICS'98, 1998.

[17] L. Breslau, P. Cao, Li fan, G. Phillips, and S.
Shenker, Web Caching and Zipf-like
Distribu-tions: Evidence and Implications, In
Proc. of Infocom'99, 1999.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 424

