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Abstract: - Most previous studies have only addressed a single-response problem. However, more than one 
correlated response frequently occurs in a manufacturing product. The multi-response problem has received 
limited attention. In the second part of this project, an approach based on the clustering analysis (CA) is studied 
to the optimization of the multi-response problem. In CA, the observations can be combined into groups or 
clusters such that each group or cluster is homogeneous or compact with respect to certain characteristics and 
each group is different from other groups with respect to the same characteristics. The optimum parameters’ 
settings for a multi-response problem can be determined by three criterions. 
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1   Introduction 
Market demands have impeled manufacturing 
companies to enhance their product’s quality.  
Off-line quality control is a cost-effective means to 
optimize the product and process design in support of 
on-line quality control. A robust design is desired to 
obtain the optimum design parameter’s settings for a 
product or an operational process in such a manner 
that the product characteristic or response attains its 
desired target with minimum variation. Up to now, 
most related investigations of robust designs are 
focused on optimizing single response of a 
manufactured product or process.  However, many 
manufactured products are diversified and this 
situation causes more than one response to be 
considered. Furthermore, these responses are usually 
correlated. For instance, the semiconductor 
manufacturing or a chemical process must frequently 
optimize a multiple response problem. 

The conventional designed experimental 
techniques can be employed to study the relationship 
between the quality response and design parameters 
(or noise parameters).  In addition, Taguchi’s method, 
which combines experimental design techniques with 
quality loss considerations, is an efficient approach 
for off-line quality control when the single quality 
response is involved.  To optimize a multi-response 
problem, multivariate analysis of variance 
(MANOVA) and the response surface method (RSM) 
are two methods frequently employed by the analysts.  
When Taguchi’s methods are employed to optimize 
the multi-response problem, the conflicts are 
frequently occurred for determining the optimum 
parameter’s settings.  Another approach to solve this 
problem entails assigning a weight for each response.  
Nevertheless, determining a definite weight for each 
response in an actual case still remains difficult.  
However, the possible correlations among the 
responses may still not be considered.  In addition, a 
factor which has significant effect in a 
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single-response may still not be significant when 
considered in a multi-response case.   

The second part of this project intends to employ 
the clustering analysis (CA) to perform the 
optimization of the multi-response problem for both 
experimental types: the Taguchi’s experiments and 
the conventional experiments.  The rest of this project 
is organized as follows. Section 2 reviews the CA. 
Section 3 describes the developed optimization 
procedure. Section 4 provides two numerical 
examples to demonstrate the effectiveness of the 
optimization procedure. Conclusions are finally 
made in Section 5. 
 
 
2   Literature Review 
Derringer and Suich [19] applied the desirability 
function to optimize the multi- responses problems in 
a static experiment.  Castillo, Montgomery and 
McCarville [17] demonstrated the modified 
desirability functions for optimizing the 
multi-response.  However, their method may lead to 
an inaccurate result for some inexperienced users and 
may increase the uncertainty in determining the 
optimal parameter setting, and is difficult for the 
practitioners who have only limited statistical 
training.  Layne [22] presented a procedure, which 
considers simultaneously three methods: weighted 
loss function, desirability function, and a distance 
function, to determine the optimum parameter 
combination.  The controversies may be generated by 
simultaneously comparing three methods to 
determine the optimum setting. 

Khuri and Conlon [20] proposed a procedure, 
based on a polynomial regression model, to 
simultaneously optimize several responses.  
Logothetis and Haigh [24] also optimized a 
five-response process by utilizing the multiple 
regression technique and the linear programming 
approach.  These two methods are also 
computationally complex and, therefore, are difficult 
to be utilized on the shop floor.  Pignatiello [25] 
utilized a variance component and a squared 
deviation-from-target to form an expected loss 
function to optimize a multiple response problem.  
This method is hard to implement for that a cost 
matrix must be obtained, in addition, the amount of 
the experimental observations are required.  
Chapman [18] proposed a co-optimization approach, 
which composites all response by using a composite 
response.  This approach might confuse some 
inexperienced practitioners in determining which 
ranges of the constraint’s can be safely expanded. 

Leon [23] presented a method, which is based on the 
notions of a standardized loss function with the 
specification limits, to optimize a multi-response 
problem.  However, only the nominal-the-best (NTB) 
characteristic is suitable to employ this approach, 
which may limit the capability for this approach.  
Ames et al. [16] presented a quality loss function 
approach in the response surface models to deal with 
a multi-response problem.  The basic strategy is to 
describe the response surfaces with experimentally 
derived polynomials, which can be combined into a 
single loss function by using known or desired targets.  
Next, minimizing the loss function with respect to 
process inputs locates the best operating conditions. 
Lai and Chang [21] propose a fuzzy multi-response 
optimization procedure to search for an appropriate 
combination or process parameter settings. A strategy 
of optimizing the most possible response values and 
minimizing the deviation from the most possible 
values is used which considers not only the most 
possible value, but also the imprecision of the 
predicted responses.  Tong et al. [28] developed a 
multi-response signal to noise (MRSN) ratio, which 
integrates the quality loss for all responses, to solve 
the multi-response problem.  Conventional Taguchi 
method can be applied based on MSRN. The 
optimum factor/level combination can be obtained.  
Su and Tong [26] also proposed a principle 
component analysis approach to perform the 
optimization of the multi-response problem.  Initially, 
standardizing the quality loss of each response; the 
principle component analysis is then applied to 
transform the primary quality responses into fewer 
quality responses.  Finally, the optimum parameter 
combination can be obtained by maximizing the 
summation standardized quality loss.  Tong and Su 
[27] proposed a procedure, which applied fuzzy set 
theory to multiple attribute decision making (MADM) 
for optimizing a multi-responses problem.  Although 
their method can reduce the uncertainty in 
determining each response’s weight, it is still 
computational complicated to be practically used. 
      
 
3   Proposed Approach 
 
In this section, we intend to develop a feasible 
approach to the optimization of the multi-response 
problem.  For a manufactured product or an 
operational process, the target of the response is 
usually known.  The designed experiments like as the 
Taguchi’s orthogonal array (OA) or the fractional 
factorial experiments are used to search the optimum 
parameter’s settings.  By analyzing the experimental 
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data, an optimum parameter’s setting can be 
determined.  For the parameter’s settings performed 
in a designed experiment, it seems to be combined 
into several groups or clusters.  That is, the responses 
of some groups or clusters are close to the target and 
that of the others departures from the target.  Hence, 
the cluster analysis can be employed to study the 
structure of feasible space.  Figure 1 depicts 
graphically the viewpoint. 
 

 
Figure 1.The viewpoint of employing the cluster 

analysis to the optimization of 
multi-response problem. 

 
The optimization procedure is described as follows. 
Step1.Determine the target response of the multiple 

responses. 
Step2.Determine the significant factors for each 

response. 
Step3.Perform the cluster analysis and determine the 

number of cluster. 
Step4.Determine the optimum parameter’s 

combination by using the following three 
criterions in the obtained cluster involving 
target response. 
Criterion1:  keep the same factor/level to be 

the optimum level combination. 
Criterion2: If there is conflict under 

decision-making.  Significance 
of factor is initially considered.  
The optimum factor/level 
combination of each response 
must be initially determined.  The 
optimum level can be determined 
regarding the corresponding 
factor being significant factor 
with positive effect on response. 

Criterion3: If the optimum level still can not 
be determined after using 
criterion 1 and criterion 2, the 
optimum level can be determined 
by using the minimum difference 
between the target responses and 
the corresponding responses. 

 
 

4   Propose Approach 
 
Numerical example 1 
This numerical example can be referred to Castillo et 
al [1]. The wire bond heating system has three control 
factors: flow rate (A), flow temperature (B), block 
temperature (C).  Table 1 lists the levels of each 
factor.  There are six responses to measure three 
different locations’ maximum, beginning, and 
finishing bonding temperature. The six responses are 
nominal-the-best(NTB) and the target values are (y1,, 
y2, y3, y4, y5, y6) = (190, 185, 185, 190, 185, 185).  
The experimental observations are given in Table 2.   
 

Table 1. The control factors' levels 
Factor Level 1 Level 2 Level 3 

A 40 80 120 
B 200 325 450 
C 150 250 350 

 
Table 2. The experimental observations. 

 
 
This case is analyzed by the developed optimization 
procedure.  From the experimental observations, 
there are sixteen data sets (the sixth data set 
represents the target).  These data sets can be viewed 
as the feasible space.  We can search the optimum 
parameter’s settings from the feasible space.  Next, 
the CA is preformed.  We use the mixture of the 
hierarchical and nonhierarchical CA to analyze this 
data set.  From the SAS’s output, we consider that the 
suitable cluster’s number to be 4 (the R-square value 
of four clusters 0.876 is larger than the R-square 
value of three 0.756).  According to the results of 
SAS, we find that the target, forth and twelve data 
sets are combined into the same group.  It can provide 
the available information for determining the 
optimum parameter’s settings.  The factor/level of 
both data sets (the forth and the twelve data sets) are 
(120, 450, 250) and (80, 450, 350).  The criterions in 
step 4 can be then used to determine the optimum 
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settings.  For criterion 1, the level of the factor B for 
both data sets are the same, the level can be kept.  
According to the information of this case [1], all three 
factors are significant factors for each response.  We 
should employ the criterion 3 to determine the 
optimum settings.  The level of factor A and B can be 
determined as 80 and 350 (the response of the twelve 
experimental run is closer than that of the forth 
experimental run).  Hence, the optimum parameter’s 
settings can be determined as level-type (80, 450, 
350).  However, the available information will be 
utilized to determine the continuous-type.  From the 
clustering result, the factor A and factor C should 
have the continuous optimum settings.  For factor A, 
the continuous optimum settings should lie in the 
interval (80, 120).  For factor C, the continuous 
optimum settings should lie in the interval (250, 350). 
Table 3 lists the parameter’s settings for Castillo et al 
and the developed procedure.  From this table, we can 
find that the optimum parameter’s settings obtained 
from CA is very close to the results found from 
Castillo et al.  The parameter’s settings found by 
Castillo et al are the continuous form and the 
parameter’s settings found by CA are discrete form.  
From the comparisons, they are very close and the 
possible interval of optimum settings also includes 
the results of Castillo et al.  Hence, the effectiveness 
and correctness of CA for can be verified. 
 

Table 3. The comparison table. 
Control Factor  

Approach x1 x2 x3 
Castillo et al 84.15 450 329.8 

Cluster analysis 80 450 350 
 
Numerical 2 
This numerical example can be referred to Tong and 
Su [15].  The PECVD process has eight control 
factors from A to H.  Only factor A has two levels 
and the other factors have three levels.  There are two 
responses (DT and RI).  The two responses are 
nominal-the-best (NTB) and the target values are 
(DT, RI) = (1000, 2).  The experimental observations 
are given in Table 4.   

This case is analyzed by the developed 
optimization procedure. From the experimental 
observations, there are eighteen data sets.  We can 
add one data set, i.e. the target set of the optimum 
combination.  The nineteen data sets can be viewed 
as the feasible space. Next, we can search the 
optimum parameter’s settings from the feasible space.  
The CA is preformed.  We also use the mixture of the 
hierarchical and nonhierarchical CA to analyze these 
data sets.  From the SAS’s output, we consider that 

the suitable cluster’s number to be 4 (the R-square 
value of four clusters 0.932 is larger than the 
R-square value of three clusters 0.845).  According to 
the results of SAS, we find that the target, third and 
tenth experimental run are combined into the same 
group.  It will provide the available information for 
determining the optimum parameter’s settings. The 
factor/level of both combinations are 
A1B1C3D3E3F3G3H3 and A2B1C1D3E3F2G2H1.  
The criterions of step 4 can be then used to determine 
the optimum settings.  For criterion 1, the level of the 
factors B, D and E for both combinations are the 
same, the level’s combination (B1D3E3) can then be 
kept. The optimum factor/level combinations for 
both responses are: A1B1C3D2E2F2G2H3 to 
response DT and A1B3C2D1E3F1G1H3 to response 
RI. According to the information of this case [15], the 
factors B, C and F are the significant factors for 
response DT and the factors B, E and F are the 
significant factors for response RI. The level of factor 
C can be determined by using the criterion 2 of step 4.  
The level of factor C can be set to the level 3. Then, 
we employ the criterion 3 to determine the other 
optimum settings. The others factors’ settings can be 
determined as A2F2G2H1 by using the criterion 3.  
After performing the analysis, the final optimum 
parameter’s settings can be represented as 
A2B1C3D3E3F2G2H1. 
 

Table 4. The experimental observations. 

 
 

Table 3 lists the parameter’s settings for Tong and 
Su, and the developed procedure.  From this table, we 
can find that the optimum parameter’s settings 
obtained from CA still differ with the results found 
from Tong and Su.  The parameter’s settings found 
by Tong and Su considered the priority of responses.  
Maybe, the priority of response will affect the result.  
However, it can not be included in this project.  We 
intend to study more detailed in the future. 

 
Table 4. The comparison table (represented as level). 

 
 
 
6   Concluding Remarks 
This study presents an approach to address the quality 
improvement for a multi-response problem. As for 
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the concept of the proposed, we apply the clustering 
analysis technique to form the primary core. The 
useful information about the parameter optimization 
can be obtained by means of the concept of clustering 
characteristics. In this study, we also applied two 
examples to demonstrate the rationality and 
feasibility of the proposed approach. 
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