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Abstract: We deal with well known two kinds of mathematical models of tumour angiogenesis. We first study the
solvability and the asymptotic profile of the solution to a parabolic ODE system proposed by Othmer and Stevens.
Next we deal with the model of tumour induced angiogenesis by Anderson and Chaplain in the same line. Finally
we discuss how the models link to each other and provide some frameworks of the solvability and the asymptotic
profile of the solution to them for which our method is applicable.
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1 Introduction
We begin with a brief explanation about tumour an-
giogensis.
1.Tumour produces TAFs(some chemicals) as a trig-
ger of tumour angiogenesis. They diffuse and reach
neighboring capillaries and other blood vessels.
2. In response to TAFs EC(endothelial cells) surface
begins to develop pseudopodia which penetrate the
weakened basement membrane.
3. Capillary sprouts continue to grow in length out
of the parent vessels and form loops leading to micro
circulation of blood.
4. The resulting capillary network continues to
progress and eventually invades the tumour colony.

The above sequent procedure is called tumour
angiogenesis, which permits the tumour to grow fur-
ther.

In [8] Othmer and Stevens derived a parabolic
ODE system formulating the reinforced random walk
model(cf.Davis[3]), where unknown functions � �
� ��� �� and � �� ��� �� stand for the density of the
particle and that of control species, respectively. That
is,

�� � ��� ������������� ���	� �
�
�

�� � 	 ���� �� in �� ����� �
�
�

������������ ��� �
 � �� on ������ � � �
���

(no-flux condition)

� ��� �� � ����� � �� � ��� �� ������ � �� �
���

where � is a bounded domain in �� with smooth
boundary ��, � 
 � is a constant and 
 denotes the

outer unit normal vector. In fact, [8] provides the rein-
forced random walk on lattice points as in Davis [3],
takes the renormalized limit and gets the above sys-
tem. By the numerical computation [8] classified the
solution according to its behaviour as �� �� �

1.(aggregation) �� ��� ����� � � for all �,
��� ������ �� ��� ����� 
 �� ��� ����� �
2.(blowup)�� ��� ����� becomes unbounded in finite
time.
3.(collapse)��� ������ �� ��� ����� � �� ��� ����� .

Levine and Sleeman[7] apply it to the under-
standing of tumour angiogenesis where � is the den-
sity of EC, � is TAFs concentration and the sensitiv-
ity function ��� � is of the form:

��� � � �
� � �

� � �
��� �
���

where �, � 
 � and � is a constant. In this paper,
we first review (1.1)-(1.4), so called, Othmer-Stevens
model(cf.[4]-[6]). We deal with the existence of time
global solution to (1.1)-(1.4) with (1.5) for � 
 �
and 	 ���� � � �� (exponential growth), here-
after referred to as [O-SE]. We introduce the prob-
lem (1.1)-(1.4) with (1.5) for � 
 � and 	 ���� � �
��� (uptake) , which is written by [O-SU] simply
hereafter.

In the same line, we show the existence of time
global solution to a parabolic ODEs system mod-
eling tumour angiogenesis by Anderson and Chap-
lain[1][2], which is called Anderson-Chaplain model
and is sometimes denoted by [A-C] hereafter. [A-
C] has been provided based on physiological and
morphological observations and experiments indepen-
dently of Othmer-Stevens model.We finally discuss a
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connection between these models and find a generic
framework of the solvability and the asymptotic pro-
file of the solution to them.

2 Othmer-Stevens model

2.1. Exponential growth case for � � �

In this subsection we consider the problem (1.1)-
(1.4) for � � � and 	 ���� � � �� , that is, [O-
SE]. Mathematical analysis of this model was done by
Levine and Sleeman [7]. In fact, taking ���� � �,
we get �� � � because of ���� � � and it holds

����	 � ������������
���� � ����

��� � ����� � ��
�����

� �� in �� ��� � � �
�
�

from (1.1) and (1.2). Then our problem is reduced to
the the following:

����

�������
������

����	 � � in �� ��� � �

�
��

�	�� � � on ��� ��� � �

����� �� � ������ ���� �� � ���������

In [7], Levine and Sleeman replaced the coeffi-
cient by a constant,

��� � ����

��� � ����� � ��
�

��� � ���

�� � ���� � ��
� ��������

�
�
�
under the agreement that �
 � 
 � or � 
� 

�. Their argument is verified in [7] if � is bounded
for any � 
 �� However, there is a case that � � ��

obtained in [7] is unbounded, where this simplifica-
tion is not valid. Hence in this paper we do not con-
sider the simplified case but the argument discussed in
this section holds in the simplified case, too.

On the other hand, the simplified case has been
studied as a special case of the original problem. If
� 
 � 
 �, according to the above argument it is
seen that ��� � � � �������� � ��. In this case
(TM) is reduced to the following:

����

�������
������

��� ����� � ��� � ������ � � �
���

�
��

�	�� � �

����� �� � ������ ���� �� � ��������

For ����, Levine and Sleeman [7] constructed the
solution when � � 
� � � 
 and � � 
��
. They
showed the existence of a collapse solution in the case
of � � 
 and � � �
 and that of blow up solution in
the case of � � 
 and � � 
. Yang, Chen and Liu [10]
proved that both time global and blow up in finite time
solutions exist dependent on their choice of initial data
even if � � 
 and � � 
. Further they stated that one
may obtain a collapse solution to ���� for � ��

and general spacial dimension in the same line.

In [4]-[6], we studied ���� for � � �. We put
���� �� � ������� �� in (2.1) and derive the equation
concerning � � ������ �

������ ���� ��	 � ����	 � ��� �����

���
�
����� ����������

�
���

�
���� ������������

�

� � �
���

where

� � ���� �� �
����� ��

�
 � ���������
 � ��������
�

�
���
If � 
 �, � � �, the second order terms of (2.4) is
a hyperbolic operator, that is, (2.4) is hyperbolic with
the strong dissipation. In this paper we deal with only
parabolic ODE system of which can be reduced to this
type of the equation.
Hence we assume the following assumption:

���
�
� � � 
 �� � � �

�
���� � � � 
 �� � 
 �

�

�
���
���� is reduced to

�����

������������
�����������

����	 � � in �� �����

��
��

� � on ��� �����

���� �� � ������ ����� �� � ����� in �

��� �
	
� ���� � �.

Here, the additional assumption ��� � � leads to	
� ���� � � by the standard argument(see Kubo and

Suzuki[4]).

Theorem 2.1.([6;Theorem 2.1]) Let the ini-
tial value ���� ��� be sufficiently smooth, and the con-
dition ���� be satisfied� Then, if � 
 � is large,
we have a unique classical solution � � ���� �� to
����� and it holds that

���
����

���
�
	��	 � �� �
���
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From the above theorem, we get the solution
���� � to [O-SE] by putting � ��� �� � � � ����� ��

and � ��� �� � ������	
��� Then, it follows that from
(2.7) that

���
����

�� ��� �� � ������� � �. �
���

On the other hand, we have � ��� �� � � � �����
and it is possible to take �� � ����� satisfying
�� ��� ����� 
 �� Thus, we have the following.

Corollary 2.1.([6;Corollary 2.1]). If the same
assumption as in Theorem 1.1 is satisfied, there is a
collapse in [O-SE]. More precisely, �
��� holds and
consequently, it holds that

���
����

���
�
� ��� �� � ���

2.2. Uptake case for � � �

In this subsection we deal with [O-SU] for ����,
that is, (1.1) for � 
 �, (1.2) for 	 ���� � �
��� ,(1.3),(1.4). Putting ���� �� � ��� � ���� ��
for � 
 �, (2.1) is reduced to the following:

������������ ��	 � ����	 � ������
�
����������

�

�� �


�����������

�
����� � � �
� �

where � � ���� �� � �����
�
�
������������������ . Our

problem is rewritten by

��� ��

�������
������

����	 � � in �� �����

�
��
� � � on ��� �����

���� �� � ������ ����� �� � ������

Under ���� ����	 is the same type equation of (2.4)
for ����, that is, it implies that we can obtain the so-
lution of ��� �� in the case of ���� for sufficiently
large � 
 � in the same way as in Theorem 2.1. In
fact, for smooth initial data ������� ������, there ex-
ists the smooth solution ���� �� such that it satisfies

���
���

����� �� � �� �
�
��

Putting � ��� �� � � � ����� ��, � ��� �� � ������,
it is seen that �� ��� ���� ��� ��� is the solution of [O-
SU] with ����(cf.[6]).

Theorem 2.2. Let the initial value ���� ��� be
sufficiently smooth and let the condition ���� be
satisfied� Then, if � 
 � is large, there exists a
time global smooth solution ���� �� to the problem
��� ���

Taking account of (2.10), we have the following
asymptotic property of the solution.

Corollary 2.2. Under the same assumption as in
Theorem 2.2, there is a collapse in �! � " 	�

(Remark) the relationship between exponential
growth and uptake. In [O-SE] with ����, we
have � ��� �� � ������	
�� and in [O-SU] with ����,
we have � ��� �� � �������	
��. Hence in [O-SU]
with ����(1.1) and (1.2) can be reduced to the fol-
lowing for !� ��� �� � ������ �� and !��� � ��
����

���

�
�� � 
 �:

�� � ��� ��� � ��� ��� !�� !� ��� !�� � !���

which is of the form of [O-SE].

3 Anderson-Chaplain model

In this section we deal with a parabolic ODEs system
modeling tumour induced angiogenesis provided by
Anderson and Chaplain [1][2]. The equation describ-
ing EC(endothelial cells) migration is presented by,

��

��
� ����� � �#������� � $�� � ���%��

in �� ����� ���
�
where � � ���� �� is the EC density, which is cor-
responding to � ��� �� in Othmer-Stevens model, �
is the cell random motility coefficient, #��� is the
chemotactic function with respect to TAF(tumour an-
giogenesis factors) concentration � � ���� ��, which is
corresponding to � ��� �� in Othmer-Stevens model,
% � %��� �� is the concentration of an adhesive chemi-
cal such as fibronectin, $� is the (constant) haptotactic
coefficient(see [1],[2]). It is assumed that #��� takes
the form

#��� �
#�


 � ��
�

where #� represents the maximum chemotactic re-
sponse and � is a measure of the severity of desen-
sitisation of EC receptors to TAF. They assume that �
and % satisfy the following equations respectively:

�%

��
� ������%� in ������� ���
�

��

��
� �&��� in �� ����� �����

where �, �� and & are positive constants. The equa-
tions are normally posed in a bounded domain � with
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no-flux boundary conditions on ��� In this section we
consider this model in the following form:����
����������������
���������������

�
��
� � ����� � �#������� � $�� � ���%��

�
��
% � ��� ���%�

�
��
� � �&��� in �� �����

��
��
	�� � ��

��
	�� � ��

��
	�� � � on ��� �����

���� �� � ������ %��� �� � %����� ���� �� � ������

Sleeman, Anderson and Chaplain [9] constructed
a solution of ���� in case � and % depend on � only
in 1 or 2 dimension. In this section we find how the
models link to each other in the continuous form. Im-
proving the reduction process used in section 2, we re-
duce (3.1)-(3.3) to the same type of a single equation
as (2.9) for ����. That is, Anderson-Chaplain model
is essentially regarded as the same type of parabolic
ODE system as [O-SU] for ���� in this sense. Ac-
cording to the way used in subsection 2.2, we can
show the existence of the time global smooth solution
��� %� �� of ����, of which � collapses. In fact, by
(3.2) and (3.3) we have　

�

��
��� 	% �

�

��
	 � �����

�

��
��� � � �&�.

In subsection 2.2 the procedure from (2.1) to
��� �� play the most important role to obtain the
solution of [O-SU] for ����. Since (2.1) is derived
in exponential growth case, in order to deal with
(3.1)-(3.3) in the same procedure, instead of (3.2)-
(3.3) it should start with the following:

�

��
��� 	%������ 	 � ����

�

��
��� � � &�. �����

Setting ��� ���� �� � ���� ��, ���� �� � &������� ��,
we have

%��� �� � ����� ���
������	
���%�������

��
� ������

���
� �

In terms of ' � '��� � �����
�������%�������

��
� �,

(3.1) and (3.4) are reduced to the following.

����	 � ��� ����� �� � �
#��

�


 � ���
�����

�� � �$����
��
�
��' �� � �$�&

�������
��
�
�'���

� �. �����

If '��� 
 �� �� with ���� can be regarded as the
same type equation of �� with ����. Therefore we

can prove the time global existence of the solution of
[A-C] in the same way as in Theorem 2.1(cf.[6]).

�����

���������
��������

�������� ���� ��	 � �	��	 � �
in �� �����

�
��
� � � on ��� �����

���� �� � ������ ����� �� � ������

In fact, we can obtain the solution of ����� in the case
of ���� for sufficiently large � 
 � in the same way
as in Theorems 2.1 and 2.2. In fact, for smooth initial
data ������� ������, there exists the smooth solution
���� �� such that it satisfies

���
���

����� �� � ��

Theorem 3. Let the initial value
������� %����� ������ be sufficiently smooth and
let '��� 
 �� There is a classical solution
����� ��� %��� ��� ���� ��� of ���� such that

���� �� � &���� � ����� ���� ���� �� � �������	
��

%��� �� � ����� � �
��
�
�������	
���'���

and that it holds
����� ��� ��������� � �� ����� �������� � ��

�%��� ��� �
��
������ � � ��� ���

where ��� stands for the spatial average of �����.

Corollary 3. Under the same assumption as in
Theorem 3.1, there is a collapse in �����

4 Conclusion

Othmer-Stevens model

� ��� �� � � � ����� ��
� ��� �� � ������	
�� � ����� ���

Uptake(����)
� ��� �� � � � ����� ��

� ��� �� � �������	
�� � ���� ���

�

Anderson-Chaplain model

Exponential growth(����)

�

�

���� ���� � � � &���� � ����� ���
���� ���� � � � �������	
�� � ���� ���

%��� �� � ����� � �
��
�
�������	
���'���

（Remark）
asymptotic
profile

solvability
(collapse)

Since in above models ����	� ����	 and �	��	 are
in the same class of partial differential equation, it
seems that the models belong to the same framework
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of the solvability. Especially, further considering into
the asymptotic profile of the solution, it is seen that
[A-C] and [O-SU] with ���� belong to the same fam-
ily as the mathematical model. In fact, the approachs
used for obtaining the solution of [A-C] and [O-SU]
are quite same as shown in subsection 2.2 and section
3.

Finally, we show the way of linking [A-C] and [O-
SU] explicitely in the following. From (3.4) it follows
that

��� 	% � ����� 	 �
��
&

��� �� ���
�

Putting

% � �
��
� � ����� ���
�

and substituting % by (4.2) in (3.1), we have
�

��
� � ����� � �#�������� $�� � �����

��
� ��

� ����� � ������


����
 � ��� � ��� ����

��
�

�

� ����� � ��������
 � ���
��
� ����

��
�

�

� �� � ��� ���
�

��
 � ���
��
� ����

��
� 
���

� �����

Therefore it is seen that the transition rate of the mas-
ter equation (3.1) is of the form:

��
 � ���
��
� ����

��
�


�
��

�����

which is corresponding to ��� � in Othmer-Stevens
model. The following result implies that (A-C) and
[O-SU] with ���� are essentially the same type of the
parabolic ODE system.

Theorem 4. [A-C] is reduced to the same type
of the parabolic ODE system as Othmer and Stevens
model:

�� � �� � ��� ���
�

��
 � ���
��
� ����

��
� 
�

��

��

�� � �&���

which are of the form of (1.1) and (1.2) in [O-SU] with
���� respectively.
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