
An Adaptive Control Scheme for Multi-threaded Graphics
Programs

Nakhoon Baek∗
School of EECS

Kyungpook Nat’l Univ.
Daegu 702-701

Korea
oceancru@gmail.com

Choong-Gyoo Lim
Digital Contents Lab.

ETRI†
Daejon 305-700

Korea
cglim@etri.re.kr

Kwang-Ho Yang
Digital Contents Lab.

ETRI†
Daejon 305-700

Korea
khyang@etri.re.kr

Youngsul Shin
School of EECS

Kyungpook Nat’l Univ.
Daegu 702-701

Korea
youngsulshin@msn.com

Abstract: In these days, multi-core CPU’s are easily available, and thus, multi-threaded programs are preferred. In
the field of computer graphics, there is still no reference programming model for the multi-threaded environments.
A typical graphics program may have a simulation-rendering loop. When we parallelize this loop structure, we
will have performance improvements. Furthermore, we can use a set of threads to more accelerate it with multi-
core CPU’s. In this paper, we select a sample problem, and represent its parallelized version, to finally present an
adaptive control scheme for the number of simulation and rendering threads. Our adaptive scheme is designed to
maintain the optimal performance through controlling the number of threads dedicated to different tasks. Simula-
tion results show that this scheme is better than the fixed number of threads cases.

Key–Words: Multi-core CPU, Acceleration, Multithreading, Hyper-Threading, Simulation, Rendering.

1 Introduction
Traditionally, our PC’s have a single CPU and a sin-
gle graphics card to provide multimedia contents in-
cluding graphics outputs and computer games. Along
with the development of semi-conductor technology,
we now meet the technical limit of CPU clock speed
and it is impossible to speed up it dramatically at this
time. Therefore, in these days, we need to apply the
parallelism to PC’s and its related software[1].

Mainframe computers already met this kind of
limits, and they developed various technologies in-
cluding multi-threading, super-threading and hyper-
threading. Nowadays, PC’s and game consoles
are ready to effectively support multi-processing
schemes. For example, dual-core CPU’s including In-
tel Pentium D or Xeon processors are now available.

For these multi-core CPU’s, the serialized pro-
gramming models for traditional single-core CPU’s
are not suitable for using full CPU powers. Thus, we
need to develop multi-threaded programs based on a
parallelized programming model.

In addition to improvements in general areas, we
also need to focus specialized improvements. In the
area of computer graphics, we have GPU’s for ver-
tex shader and pixel shader, which are already paral-
lelized. In contrast, research results in usual multi-

∗corresponding author
†Electronics and Telecommunications Research Institute

processing areas focused on the symmetric multi-
processor (SMP) architectures, while graphics pro-
grams may handle asymmetric cases such as load-
balancing between CPU and GPU. Therefore, we
need parallelized programming models which are
more specialized to interactive computer graphics
programs[2, 3].

In this paper, we provide a new parallelized pro-
gramming model, which uses an adaptive control
scheme on the number of threads dedicated to specific
parts. In the next section, we present background is-
sues. In section 3, we present our programming model
and section 4 shows the implementation results for an
example problem. Conclusions are followed in sec-
tion 5.

2 Problem Formulation
From the view point of hardware, we need ad-
vanced technologies such as multi-core CPU’s, hyper-
threading, etc. Current PC platforms are ready to sat-
isfy these requirements. In particular, major CPU ven-
dors, Intel and AMD already introduced new server
and desktop CPU’s with dual-core support. Addition-
ally applying hyper-threading technology to dual-core
CPU’s, we get 4 physical threads at a time[4].

In the case of graphics cards, major graphics chip
vendors now provide multi-GPU environment, includ-
ing nVIDIA’s quad-SLI chips. Thus, we can exe-

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 498

cute 4 GPU’s simultaneously. In the future, these
trends to multi-processor environment will be more
emphasized[5]. More recently, the physics processing
unit(PPU) is newly introduced. These PPU’s are very
similar to GPU’s and thus will be parallelized in near
future[6].

Thus, current PC platforms are already multi-
processor environments with three different types of
processors: CPU’s, GPU’s and PPU’s. Our focus is
now software for these asymmetric multi-processor
environments. We need a cooperative way of fully
utilizing these heterogeneous processors.

Supports for multi-processing are focused on
mainframe computers. In the UNIX operating sys-
tem, they introduced thread concept as more lighter
process and now several multi-threading libraries are
available in UNIX and PC platforms. OpenMP
is an API for writing multi-threaded applications,
which is implemented as a set of compiler directives
and library routines for parallel application program-
mers. This API is based on the traditional fork-join
parallelism[7, 8].

For an efficiently multi-threaded program, we
need to naturally reflect the parallelism into the
threads, rather than simply dividing the existing pro-
gram into a set of threads. Along to the development
of these thread-smart environments, they will focus on
the interactive computer graphics and game program-
ming area. In other words, typical office applications
are hard to accelerate with multi-core CPU’s, mainly
due to their serialized complex software architectures.
In contrast, graphics and animation programs have a
typical architecture consisting of various modules for
simulation, rendering, data loading, audio processing,
etc. We may implement all these modules as a set of
threads to get the benefits from parallel programming
models.

In last few years, several commercial programs
already proved that multi-threading can be a solu-
tion for various problems. For example, the game
Dungeon Siege shows that lags during data loading
can be avoided through effectively balancing thread
loads, even with single-core CPU’s[9]. Game engines
like Unreal Engine 3 provide multi-threaded asyn-
chronous background loading techniques, and in near
future, more effective game engines will be developed
on the basis of multi-threading[10]. In the case of
Xbox 360, some games already say that they fully uti-
lized the triple-core CPU in the Xbox 360.

3 Programming Models
To write a parallelized application program, we need
to decompose the original problem into a set of tasks

Figure 1: A serialized programming version

which can be simultaneously executed. In this sec-
tion, we will examine a set of conceptual program-
ming models.

3.1 A Serialized Model
In the field of computer graphics, a typical interac-
tive program needs to display the current state on the
screen periodically and also needs to response to the
user inputs. Considering these aspects, typical graph-
ics programs can be roughly modeled as shown in Fig-
ure 1.

Based on the current state at time t, the simulation
part will calculate the next state at time t+∆t, and this
new state is rendered on the screen by the rendering
part. Since these steps are usually implemented as
an infinite loop, the new state will become the current
state in the next iteration[11].

From the view point of processing orders, it is a
serialized loop, which is used in most graphics appli-
cations. It has a constraint that the simulation and
rendering parts should be executed in an alternating
sequence. Therefore, we can locally parallelize the
internal codes of the simulation and rendering parts,
while they cannot be simultaneously executed.

3.2 Its Parallelized Version
In the previous section, the serialized loop structure
makes the rendering part output the new state at time
t+∆t on the screen. When it outputs the current state
at time t instead of the newly calculated state, we can
achieve more parallelization. As shown in Figure 2,
using the current state, the simulation part calculates
the next state, while the rendering part simultaneously
displays the current state.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 499

Figure 2: A parallelized version

In this case, we have a drawback of delayed dis-
plays, which makes us to see the graphics output de-
layed as time interval of ∆t, in comparison to the pre-
vious version. In contrast, we can simultaneously ex-
ecute both parts. In particular, when we have more
than two CPU cores, the total execution time will be
maximum value of the execution time for simulation
part and rendering part, rather than the summation of
them. Thus, we can speed up the overall process se-
riously, when we can well balance the simulation and
rendering parts.

3.3 Applying Multithreading
Applying the multi-thread concepts to the parallelized
version shown in the previous section, each part can
be executed by a set of threads rather than a single
process, as shown in Figure 3. This multi-threading
feature even speeds up the overall process. For exam-
ple, when the simulation part and rendering part are
executed in two threads, respectively, the overall run-
ning time will be the maximum of the running times
of totally 4 threads, and will be even less than the run-
ning time of the non-threaded version.

3.4 Adaptive Control of Theads
Through mixing up all the simulation and rendering
threads into a large thread pool as shown in Figure 4,
we can adaptively control the number of threads for
simulation and rendering. This is our final goal of
fully-threaded programming model.

This adaptive control model have an assumption:
The simulation and rendering part can be split into a
set of symmetric threads, respectively. In this case,
the total works by the simulation part will be firstly di-
vided into a set of almost equal sizes and each thread

Figure 3: A multi-threaded version

does its own one in a parallelized manner. Similarly,
the rendering part draws n objects using m threads,
though assigning n/m objects to each thread, expect-
ing all threads will be completed in almost same time.

Our adaptive control strategy will increase or de-
crease the number of threads for the simulation and
rendering parts, according to the work load of them.
For each iteration step, we measure CPU times con-
sumed by each thread, to dynamically decide which

Figure 4: An adaptive control of threads version.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 500

Figure 5: n particles in the box.

kind of thread should be increased or decreased. In
the next section, we will introduce an example graph-
ics problem, and build up an algorithm with our adap-
tive control method for the number of threads. The
result will be followed.

4 Simulation Results
In this section, we will show an example implementa-
tion of our adaptive control method and its results.

4.1 An Example Simulation
To apply our adaptive control method, we need an ex-
ample in which the simulation and rendering parts can
be symmetrically divided into a set of threads. Addi-
tionally, the simulation part had better to have a rea-
sonable time complexity to demonstrate our method.

In this paper, we use a simplified particle simula-
tion. As shown in Figure 5, there are totally n particles
in a rectangular box. Each particle constructs its own
field, which is similar to the electromagnetic field, and
has influences on all other particles[12].

Now, at a specific time t, we calculate the force
from all other particles, and get its position at the time
t + ∆t. Since a particle will be influenced by remain-
ing (n − 1) particles, all the process will be done in
O(n2) time.

For the containing box, we need additional
particle-to-plane collision detection and responses.

Figure 6: Multiple collisions with the bounding
planes.

For the given time slice of ∆t, a particle can collide
the bounding plane several times, as shown in Fig-
ure 6. For simplicity, we adjusted the time slice ∆t
and particle velocities, and make a particle to collide
bounding planes at most 3 times, in the worst case.

For each iteration, rendering threads will draw to-
tally n particles, and thus its time complexity will be
O(n).

To control the number of threads adaptively, we
will start from some measures for the CPU loads. Let
N threads

simulation and N threads
rendering be the number of threads

dedicated to simulation and rendering, respectively.
The total number of possible threads N threads

total will
be decided by the given hardware environments. For
example, a dual-core Xeon processor with hyper-
threading support can be regarded to have 4 physical
CPU cores, and thus N threads

total = 4.
Now we have the following simple constraints on

the number of threads:

N threads
simulation ≥ 1,

N threads
rendering ≥ 1,

N threads
total ≥ N threads

simulation + N threads
rendering.

Let Tsimulation and Trendering be the total CPU time
used by all the simulation threads and all the render-
ing threads, respectively. Now, the expected execution
time for each simulation and rendering thread can be
calculated as follows:

tsimulation =
Tsimulation

N threads
simulation

,

trendering =
Trendering

N threads
rendering

.

Finally, the expected overall execution time will
be the maximum of tsimulation and trendering:

ttotal = max {tsimulation, trendering}

= max

{
Tsimulation

N threads
simulation

,
Trendering

N threads
rendering

}
.

For each iteration step, we measure Tsimulation and
Trendering, and calculate the optimal values for
N threads

simulation and N threads
rendering to minimize ttotal. Thus,

we adaptively control the number of threads, based on
the values of Tsimulation and Trendering.

4.2 Results
To verify our idea, the adaptive control method in Sec-
tion 4.1 was implemented as shown in Figure 7. Red
and green spots are particles rendered by two indepen-
dent rendering threads, and white lines indicate the
bounding box.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 501

Figure 7: Our implementation program.

We executed this program on a system with a sin-
gle 3.0GHz Pentium 4 CPU with hyper-threading sup-
port. Although this CPU executes at most 2 physical
threads at a time, we measure the actual CPU time
rather than the running time of threads, and thus, with-
out loss of generality, we can simulate our adaptive
control method on this system.

Table 1 shows the simulation results for 900 and
3,000 particle cases. Letting N threads

total = 4, the
number of threads are changed to measure tsimulation,
trendering and ttotal. All the time values are averaged
over the 100 time slices.

To demonstrate the adaptive control method, we
need to change the portion of simulation and render-
ing times during its execution. As an example, we
start from 900 particles for 25% of its running time,
and then change the number of particles to be 3,000
for following 50% of its running time and finally 900
particles again for remaining 25% of its running time.

Table 1: n = 900 and n = 3, 000 cases.

(unit: sec)

n
N threads

simulation Tsimulation tsimulation measured
N threads

rendering Trendering trendering ttotal

900

1 0.071 0.071
0.042

3 0.206 0.069
2 0.081 0.041

0.051
2 0.042 0.021
3 0.077 0.026

0.066
1 0.066 0.066

3,000

1 0.586 0.586
0.586

3 0.237 0.079
2 0.890 0.445

0.451
2 0.119 0.060
3 0.890 0.297

0.304
1 0.057 0.057

Table 2: Various number of particles case.

(unit: sec)

n
N threads

simulation Tsimulation tsimulation measured
N threads

rendering Trendering trendering ttotal

2 0.487 0.244
0.265

900→ 2 0.124 0.062
3,000 3 0.481 0.244

0.188→ 900 1 0.064 0.244

varying
0.472

N/A 0.186
0.087

Our implementation shows that the number of simu-
lation threads are changed from 2 to 3 and finally to
2 again. This adaptive control result is compared with
fixed number of threads cases. As shown in Table 2,
the adaptive control case is better than fixed number
of thread cases.

4.3 Conclusion
To fully utilize today’s multi-core CPU’s, we present
a parallelized programming model. From the typical
simulation-rendering loop in computer graphics pro-
grams, we tried to parallelize its loop structure and
applied multi-threading features to it. Our final pro-
gramming model is based on the pool of asymmetric
threads. In other words, a set of threads are used to
different tasks.

To realize our adaptive control scheme, we select
a sample problem of n-particle simulation. After rep-
resenting its parallelized version, we present an adap-
tive control scheme for the number of simulation and
rendering threads. These number of threads are in-
creased or decreased according to the measured exe-
cution time of them.

Our adaptive scheme is designed to maintain the
optimal performance through controlling the number
of threads dedicated to different tasks. Simulation re-
sults show that this scheme is better than the fixed
number of threads cases.

To verify our adaptive control scheme more se-
riously, we plan to perform various experiments for
additional problems. Executions on multi-processor
systems are also required. Using two dual-core hyper-
threading CPU’s, we can use at most 8 physical
threads, and we need more experiments on these ad-
vanced systems. Improvements on the adaptation al-
gorithms are also required.

References:

[1] Intel, Software Insight, July 2005 Issue, 2005.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 502

[2] A. Watt and F. Policarpo, 3D Games: Real-time
Rendering and Software Technology, Addison-
Wesley, 2001.

[3] A. Rollings and D. Morris, Game Architecture
and Design, Coriolis, 1999.

[4] http://www.intel.com/
[5] http://www.nvidia.com/
[6] http://www.ageia.com/
[7] T. Mattson and R. Eigenmann, OpenMP: an API

for Writing Portable SMP Application Software,
2004.

[8] OpenMP Web site, OpenMP tutorial on Super-
Computing ’99, 1999.

[9] S. Bilas, “The Continuous World of Dungeon
Siege”, Game Developers Conference ’02, 2002.

[10] http://www.unrealtechnology.com/
[11] D. M. Bourg, Physics for Game Developers,

O’Reilly, 2001.
[12] D. Baraff and A. Witkin, Physically Based Mod-

eling, SIGGRAPH’03 Course Note #12, 2003.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 503

