
Mechanization of Invasive Software Composition in F-Logic

Ade Azurat
University of Indonesia

Faculty of Computer Science
Depok, 16424

Indonesia

Abstract: F-Logic is originally developed to bridge between computational formalism and data specification lan-
guage while providing clear object-oriented semantic. F-Logic provides partiality on attributes and methods. This
partiality is also required by software composition in practice. Invasive Software Composition composes software
component by applying invasive composition operator (composer) to adapt the component. This adaptation may
involve partiality. The combination of object-oriented and partiality characteristic of F-Logic provides a promising
framework for the mechanization of Invasive Software Composition including aspect separation.

Key–Words:Reusability, Reliability, Software Composition, Software methodology.

1 Introduction

As in electrical engineering component software is
usually assumed as ablack boxunit. Based on this as-
sumption, several formalisms are shown in [4, 5, 7, 8].

Latest development shows that it is possible to re-
lax theblack boxconstraint of component unit which
will provide possibility for efficient composition. The
invasive software compositionis introduced in [2]. It
considers the component unit as agrey boxwhich
allows some parts of the component to be changed.
Therefore, the component interface should not be hard
coded or fixed. The composition is conducted by
transforming the component. This idea allows an ad-
vance degree of composition which required a spe-
cific language for composition such as Compost[2],
Gloo[11], or Piccola[1].

Rather different to Compost, which provides im-
plementation of composition and its component in
Java, the Gloo Language is meant to be programming
language independent. The bridge to concrete pro-
gramming language such as Java is defined by provid-
ing a built-in gateway mechanism based on theλ-F
concept[11]. Gloo refines the reliability difficulty in
Piccola due to a conceptual gap between the mech-
anisms offered by Piccola as mentioned in[11]. The
reliability of software composition is derived from the
well definedλ-F calculus which provides a more in-
tegrated mechanism. Theλ-F calculus is basically an
abstraction ofλ calculus for component software. It
is in line with the development ofλ-N[6] which has
provided a formal foundation for software reusability.

1.1 F-Logic

The design ofλ-F andλ-N calculus are important es-
pecially in invasive software composition which may
require the modification of interface. Those calcu-
lus are trying to solve the problem that arises from
the parameter permutation or incomplete parameter in
method calls (partial calls). In invasive software com-
ponent, the composition is not necessary on method
call bases. It may happen on type (class boxes) or
package bases (package boxes) where the permutation
and possible partiality can also occur. However, the
representation is basically in the same syntax, which
required additional effort to differentiate each hierar-
chy. In typeλ-N, the introduction of type could the be
hierarchy to be differentiated but not really show the
structure since the type is not related.

F-Logic[10] is originally developed to bridge be-
tween computational formalism and data specifica-
tion language while providing clear logical semantic
for the object oriented paradigm. The later issue is
more popular, therefore F-Logic is more known as An
Object-Oriented Knowledge Base Language.

The F-Logic is basically a set of F-Molecule’s and
rules. Rules are as in the descriptive, rule-based pro-
gramming. F-Molecule’s defines object description.

Derived from the need to be able to represent so
called ”null value” in database application, F-Logic
accepts partiality on attributes and methods. It allows
us to define some objects in a class but undefined on
another. It also allows the incomplete parameter in
method calls. The rich object-oriented notion in F-
Logic, allows us to have hierarchy on object, includ-
ing to define method as an object where the param-

1

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 89

eters are attributes. Within this partiality and object
oriented characteristic of F-Logic, the need of permu-
tation and partiality of invasive software composition
as mentioned before can be defined without the prob-
lem of differentiating the hierarchy as mentioned be-
fore.

Moreover, F-Logic has a model-theoretic seman-
tic and a sound and complete resolution based proof
theory. It provides a natural framework for reliable
composition reasoning. The resolution mechanism
can be used as constraint check on incomplete or mis-
matched composition. In the case of incompleteness,
the unification will find suitable value binding which
acceptable by the system. Those mentioned charac-
teristic of F-Logic provide a higher abstraction to do
reasoning compare to other similar works which are
based on Prolog [3, 9].

1.2 Invasive Software Composition

Invasive software composition composes software
component by applying invasive composition opera-
tor (composer) to transform the component to adapt
the composition. In [2] the Model of Invasive Soft-
ware Composition is defined as follow:

A fragment box is a set of program elements. A
fragment box has composition interface that con-
sists of a set of hooks.

A hook is a point of variability of a fragment box,
a set of fragments, or position that is subject to
change.

A composer is a program transformer that trans-
forms one or more hooks for reuse context.

1.3 Aspect Separation

A system may required update or feature addition. It
required modification to the system. However, some
modifications may not be compositional[12] in the
sense it can just be added as a separate module or
component. Some of the modification may required
the whole component to be modified. For example, if
we would like to have a debugging feature. All mod-
ules may have to put its own debug information, there-
fore all modules are infected. This situation is called
aspect weaving.

Invasive Software Composition supports aspect
separation. Apoint cut can be modeled as a spe-
cific type of homogeneous hook in all composed
components. For example an aspect of speed cus-
tomization on production cell case study can be mod-
eled as a hook of typespeedHook in all compo-
nents. The composition rules should guarantee that all

speedHook will be instantiated and will be checked
for compatibility. This compatibility check is well
modeled in resolution based such as F-logic (based on
Prolog). Thehorn-clausestyle reasoning is automati-
cally applied on the hook and fragment box definition
for consistency.

2 Mechanization of ISC in F-Logic

The Object oriented and partiality characteristic of F-
Logic allows quite straight forward software compo-
sition description in F-Logic. Some of the design
decision that we made are merely concern with the
execution of F-Logic program in the system we use,
which is the Flora-2[14]. Therefore, we prefer the
word mechanization because we believe we are able
to mechanize things which are previously has to be
done manually. Such ashook identification, par-
tial function substitution , and integrity constraint
reasoning. It is possible due to the reasoning capa-
bility of F-logic which allow us to automate some of
the manual reasoning a human does on doing software
composition.

Here is the basic schema to mechanize the inva-
sive software composition in F-Logic:

A fragment box is defined as regular f-molecule, it
defines its own class. The methods and attributes
of the fragment box are defined straight for-
wardly as the attribute of the F-molecule.

A hook There is no specific declaration of hook. The
user will choose and write it manually which el-
ement of the fragment boxes is a hook. It can be
put as the parameter to the object instant. That
parameter can be of any element of type or any
attribute of the class.

A composer is defined as rule which deduce the
value of a hook. The user composes component
by writing rules. These rules will adapt the frag-
ment box with the given parameter and available
component and create a complete system (can be
also said a composition)

We will explain more about the alternative using
the production cell example as mentioned in [2].

2.1 Case Study: Production Cell

The production cell system consists of several ma-
chines. Those machines are modeled as compo-
nents. They arefeed belt, rotary table,
robot arm, press, deposit belt . Those
machines have metal blanks as their input and produce

2

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 90

metal plate tin boxes. For example, as hook we define
the type on input and output to be the hook of type
class. Notice that the feed belt and the deposit belt are
actually the same machine, they only have different
item. In practice they may really be the same type of
machine. Therefore, we also should put one fragment
to represent both of them.

Below are some descriptions of production cell
fragment boxes and hooks in F-Logic.

conveyorFragment(T)[inputHook=>T,
outputHook=>T].

rotaryFragment(T)[piece1inHook=>T,
piece2inHook=>T,
piece1outHook=>T,
piece2outHook=>T].

We define here two fragments boxes. In F-
logic, the codes above are called F-Molecules. An
F-Molecule could be a description of a class, or a rep-
resentation of objects or facts. The above codes are
description of the class fragment boxes. The symbol
=> represent type declaration. The first fragment box
is theconveyorFragment . It has two attributes.
Both have typeT . The class is parameterized by type
T , which represent the binding template for the hook.
Notice that thisinputHook andoutputHook are
attributes of classconveyorFragment , they can
be seen as therequired and provided port of the
conveyorFragment fragment box.

2.1.1 Reusable component generation

The Invasive Software Composition composes soft-
ware components by program transformation[2].
Those program fragments of production cell case
study should be transformed and adapted for a com-
bined component. In F-Logic this composition pro-
cess which conducts transformation and adaptation is
defined as a rule. Below are some of the rules for pro-
duction cell case study:

_Belt(M):conveyorComponent(T)
[inputHook->M,

outputHook->M]
:- M:T,

_Belt(M):conveyorFragment(T).

R(M):rotaryComponent(T)
[piece1inHook->M,

piece2inHook->M,
piece1outHook->M,
piece2outHook->M]

:- M:T,

R(M):rotaryFragment(T).

Lets take a look at the first rule. It is
the rule to transform an unbound fragment box
conveyorFragment to a reusable component
conveyorComponent . The symbol ”: ” represents
typing declaration. It says that any instantiation of
conveyor component, will have valueM as its input
and output hooks binder. That valueM should have
type of the expected typeT . We put additional con-
straint of _Belt(M):conveyorFragment(T)
to force the composition to find that we do have the
object instantiation of conveyor fragment which may
consist of some non-adaptable codes or other such as
copy write watermarks. In F-Logic the existences of
those object instantiations are defined as follow:

metalBlank_Atype::metalBlank
[dimension * ->(10,10),

weight * ->10,
code * ->a1].

blankA:metalBlank_Atype
[price->100,

vendor->intel].

feedBelt(blankA):
conveyorFragment(metalBlank)

[manufacture=mercedec,
controlcode=feedbelt.code].

The symbol ”:: ” represents sub typing. These
codes are an example of using F-Molecule to repre-
sents object and facts. Those F-Molecule’s define the
data type of input which will be bound to the con-
veyor hook. In the last two lines, we define the object
instantiation of feed belt and deposit belt. Those lines
are not creating any component yet. It gives a name
feedBelt for the conveyor belt which is bound to
blankA . The feedBelt now inherits all unbound
and adapted elements of the conveyor fragment box.
They have nothing regarding the adaptation part of
the component. The previous rules will create an in-
stantiation of reusable component of type conveyor
component. That rules will fill in thefeedbelt
with the necessary adapted code such as that the in-
put hook and the output hook should have the value
of ”blankA”. Due to the F-Logic machinery which is
based of logic programming, this is possible. For ex-
ample instead of just fill in the input and output hook,
the composition may also modify some program ele-
ments in conveyor fragment as follows:

_Belt(M):conveyorComponent(T)

3

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 91

[inputHook->M,
outputHook->M,
speed->S,
feedingMethod->F]

:- M:T,
_Belt(M):conveyorFragment(T),
rangeSpeed(M,S),
feeding(M,F).

The rule above says, that the reusable compo-
nent of conveyor has not only its input and output
hook filled in, but also has the speed and feeding
method modified. This modification, should follow
from the other given predicaterangeSpeed(M,S)
andfeeding(M,F) . Those predicates provide pos-
sible value for the speed and feeding method. Later
on this value may also be checked for constrain re-
striction with other component. Those program ele-
ments which arespeed andfeedingMethod may
not be part of the hook. If it is part of the hook, than
the treatment is the same, but if it is not declared as
hook, but possible influenced by its composition than
it will be the job of the component vendor to provide
transformation template.

2.1.2 Software Component Composition Rules

The idea of invasive software composition is to trans-
form or adapt the fragment box when we would like
to develop a software composition. The previous ex-
planation seems to let us think that we have to provide
the re-usable component first before conducting the
composition. It may seem correct in the imperative
setting, but F-Logic is based on logic programming
which is declarative. So actually, those reusable com-
ponents will not be created, unless the transformation
rules are executed. The transformation rules will not
be executed unless there is a need for those reusable
components. The need of those reusable components
is defined by the description and composition rules.
Below is an example of composition rule for the pro-
duction cell case study.

productionCellSystem(T1,T2)
[feedBeltComp=>conveyorFragment(T1),

rotaryTableComp=>rotaryTable(T1),
robotComp=>robot(T1,T2),
pressComp=>press(T1,T2),
depositComp=>conveyorFragment(T2)].

_P(M1,M2):productionCellSystem(T1,T2)
[feedBeltComp->CompFeedBelt(M1),

rotaryTableComp->CompRotaryTable(M1),
robotComp->CompRobot(M1,M2),
pressComp->CompPress(M1,M2),
depositComp->CompDepositBelt(M2)]

:-
CompFeedBelt(M1):conveyorComponent(T1),
CompRotaryTable(M1):rotaryComponent(T1),
CompRobot(M1,M2):robotComponent(T1,T2),
CompPress(M1,M2):pressComponent(T1,T2),
CompDepositBelt(M2):conveyorComponent(T2),
M1:T1, M2:T2.

Notice that the form of production cell descrip-
tion is also defined as F-Molecule. It allows us to
have a hierarchy of component, so a system could be
a fragment box as well. The F-Molecule above de-
scribes the production cell, as a fragment with two
possible bindings. It has five elements which are all
components. Those components should be instanti-
ated according to the mentioned type and hook re-
spectively. The second part of the code is our main
concern. It is an F-Logic rule, which define the com-
position program to create a production cell system.
It can be read as: to have a production cell sys-
tem, we need an object instantiation for each required
reusable component. For example, the description
says that a production cell hasfeedBeltComp el-
ement of typeconveyorFragment with a hook.
The rule requires that the instantiation of a produc-
tion cell system should have a reusable component of
conveyorComponent which is the reusable com-
ponent of typeconveyorFragment . The rule also
mentions that the hook of all of component should
match accordingly.

2.1.3 Aspect Separation

Aspect is added as subclass of the previous compo-
sition rules. Again due to the partiality in F-Logic,
it provides a nice separation from the core compo-
nent. Any new aspect can be defined separately to
each other and to the original code. The joint point is
defined in term of implicit hooks which by default are
defined in the modeling.

Below is the example to add tracing aspect for the
production cell case study.

conveyorComponentTrace(_T)::
conveyorComponent(_T)

:- writeln(’Trace Aspect weaving’).

This rule will weave any object instantiation
of conveyorComponent with the tracing code,
if we decided that those components are of class
conveyorComponentTrace . It provides a sep-
aration abstraction, which mean that the component
vendor can prevent its component to be woven to ille-
gitimate aspect by not providing its subclass declara-
tion. So although the end user has defined it aspect re-
quirement but if the component has not been allowed

4

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 92

to sub class the provided aspect trace weaving code,
then the component will not do any tracing. The sub
classing can be defined directly as a fact, or it can also
be defined as rule. Below are the example in Produc-
tion cell case study, we would also like to show that
the tracing aspect can be propagated.

feedBelt(blankA)
[method=>>methodFragment].

feedBelt(blankA)
[method->>{methodOne,methodTwo}].

For example thefeedBelt has several methods
and usages of other class, as describe above. The be-
low code define the weaving code of the tracing as-
pect. Notice that, these pieces of code are written af-
ter the previous code without changing anything from
the core component. We define those methods and
classes with typeFragment . It is important to allow
them to be adapted in general manner since the non
Fragment type of element are not by default meant
to be modified.

methodTrace::methodFragment.

X:methodTrace:-
X:methodFragment,
write(’add traces in method: ’),
writeln(X).

_Belt(M):conveyorComponentTrace(T):-
_Belt(M):conveyorComponent(T),
_Belt(M)[method->>X:methodTrace],
_Belt(M)[class->>Y:classTrace],
_Belt(M)[debugInfo->Notes],
writeln(Notes).

Another motivating observation is that the F-
Logic mechanization allows separation on aspects.
Those aspects may have included other language con-
structs which are not part of the core component. The
coding in F-Logic allow us to separate attributes in
several F-Molecule’s and yet always consider them as
a whole. Of course the technical problem ofObject
Schizophrenia[13] may still occur on standard compi-
lation scheme. However the F-Logic style of coding
is quite similar to scheme migration[2] which could
eliminate the problem.

3 Application: Checking Architec-
tural Feature with F-Logic

The main aim of mechanizing Invasive Software
Composition in F-logic is to allow reasoning on the

composition architecture. The reasoning allows us
to easily provide many additional checking. Those
checking’s may involved things such as cyclic check,
reachability, and constraint check. We will discuss
briefly one type of checking.

The Composition Constraint Check is one of ad-
vantage of ISC mechanization in F-Logic. Due to the
fact that F-Logic is based on Logic programming, the
constraints check become very natural in coding. For
example in production cell case study, one may want
to have more constrains on the system based on the
speed of each component. We can modify the compo-
sition code as follow

_Belt(M):conveyorComponent(T)
[inputHook->M,

outputHook->M,
speed->S,
feedingMethod->F]

:- M:T,
_Belt(M):conveyorFragment(T),
rangeSpeed(M,S),
feeding(M,F).

_P(M1,M2):productionCellSystem(T1,T2)
[feedBeltComp->CompFeedBelt(M1),

rotaryTableComp->CompRotaryTable(M1),
robotComp->CompRobot(M1,M2),
pressComp->CompPress(M1,M2),
depositComp->CompDepositBelt(M2)]

:-
CompFeedBelt(M1):conveyorComponent(T1),
CompRotaryTable(M1):rotaryComponent(T1),
CompRobot(M1,M2):robotComponent(T1,T2),
CompPress(M1,M2):pressComponent(T1,T2),
CompDepositBelt(M2):conveyorComponent(T2),
M1:T1, M2:T2,
CompFeedBelt(M1)[speed->S],
CompRotaryTable(M1)[speed->S],
CompDepositBelt(M2)[speed->S],
CompRobot(M1,M2)[speed->S2],
S2 is 2 x S,
CompPress(M1,M2)[speed->S],

This composition code says that the speed el-
ement of all components should be the same (rep-
resented by variableS) unless for component robot
which should has the speed twice as the other.

This constraint could be put as a restriction on the
composition or it could only be put as a property to
check. The above code is the example of the first
case. On the second case, the composition rules are
not modified, but those additional codes are defined as
separated predicates which will answer ”yes” or ”no”
related whether the constraint is fulfilled or not.

5

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 93

4 Conclusion

The F-Logic paradigm has been shown sufficient to
mechanize the invasive software composition and to
conduct additional checking and reasoning on the
composition in a natural way. Those checking and
reasoning are conducted in the same abstraction but
language independent which make it a lot easier com-
pare to Compost[2]. Compare to other approaches
based on Prolog such as in [9, 3], the Object Oriented
style of F-Logic provides a better abstraction. F-Logic
is a good choice to do component software composi-
tion especially in the invasive software composition
where components can to be transformed by F-Logic
rules. The F-Logic partiality provides a separation of
view to the system. It is possible to see the component
on different view, because the component can be rep-
resented by combination of F-Molecule where each
F-Molecule may represent each own view to the sys-
tem or to the component. This situation serves well on
providing aspect separation and code weaving model-
ing.

Acknowledgments: This research was conducted in
Technical University of Dresden, Germany, within the
AsiaLink Project –grant No. VN/ASIA-LINK/001
(79754). It is also partially funded by Hibah-B
Fasilkom UI 2005. Author also thank to Prof. Uwe
Assmann for the supervision and ideas.

References:

[1] Franz Achermann. Piccola white paper. Working
paper, IAM, University of Bern, 1999.

[2] Uwe Aßmann. Invasive Software Composition.
Springer-Verlag, 2003.

[3] Johan Brichau, Kim Mens, and Kris De Volder.
Building composable aspect-specific languages
with logic metaprogramming. In1st Conf.
Generative Programming and Component Engi-
neering, volume 2487 oflncs, pages 110–127,
Berlin, 2002. Springer-Verlag.

[4] M. Broy. Multi-view modelling of software
sytems. In Hung Dang Van and Zhiming Liu,
editors,Proceedings of the Workshop on Formal
Aspects of Component Software (FACS), 2003.

[5] Ivica Crnkovic and Magnus Larsson. Challenges
of component-based development.Journal of
Software Systems, December 2001.

[6] Laurent Dami. Functions, records and compati-
bility in the lambda N calculus. In Oscar Nier-

strasz and Dennis Tsichritzis, editors,Object-
Oriented Software Composition, pages 153–174.
Prentice-Hall, 1995.

[7] Juliana KÃster Filipe. A logic-based formaliza-
tion for component specification.Object Tech-
nology, 1(3):231–248, 2002.

[8] Holger Giese. Contract-based component sys-
tem design. In Jr. Ralph H. Sprague, editor,
Thirty-Third Annual Hawaii International Con-
ference on System Sciences (HICSS-33), Maui,
Hawaii, USA (J. Ralph H. Sprague, ed.),. IEEE
Computer Press, jan 2000.

[9] Elnar Hajiyev, Neil Ongkingco, Pavel Avgusti-
nov, Oege de Moor, Damien Sereni, Julian Tib-
ble, and Mathieu Verbaere. Datalog as a point-
cut language in aspect-oriented programming.
In OOPSLA ’06: Companion to the 21st ACM
SIGPLAN conference on Object-oriented pro-
gramming languages, systems, and applications,
pages 667–668, New York, NY, USA, 2006.
ACM Press.

[10] Michael Kifer, Georg Lausen, and James
Wu. Logical foundations of object-oriented and
frame-based languages.J. ACM, 42(4):741–843,
1995.

[11] Markus Lumpe. Gloo: A framework for mod-
eling and reasoning about component-oriented
language abstractions. InCBSE, pages 17–32,
2006.

[12] I. S. W. B. Prasetya, Tanja E. J. Vos, A. Azu-
rat, and S. Doaitse Swierstra. A unity-based
framework towards component based systems.
In Teruo Higashino, editor,Revised Selected
Papers OPODIS 2004, volume 3544 ofLec-
ture Notes in Computer Science, pages 52–66.
Springer, 2005.

[13] Clemens Szyperski.Component Software, Be-
yond Object-Oriented Programming. ACM
Press, Addison-Wesley, 1998.

[14] Guizhen Yang, Michael Kifer, Chang Zhao, and
Vishal Chowdhary.Flora-2: User Manual, 0.94
(narumigata) edition, 2005.

6

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 94

