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Abstract:-As is well known, the search for the exact variational principles (\VP) for the full Navier-Stokes equations of
3-D viscous flow is an extremely difficult, still open problem in fluid mechanics. Just recently this problem for the steady
flow case has been successfully solved for the first time via a systematic reversed deduction approach incorporating a
method of undetermined function. As a further development of that, two VP families are generated herein for the
unsteady flow case, providing a new rigorous theoretical basis for the finite element analysis of unsteady viscous flow,
especially for the direct numerical simulation (DNS)of turbulent flow.
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1 Introduction

The search for exact (genuine) variational
principles (VP) for the full Navier-Stokes (N-S)
equations of viscous flow, as is well-known, is an
extremely difficult, longstanding open problem in fluid
mechanics. Since the derivation of the N-S equations
by Navier (1822) and Stokes (1845), up to now, in the
literature there exist genuine VP only for two special
cases: either for the inviscid flow {Bateman’s VP
(1929); Herivel-Lin’s VP (1955-1959)} or for the slow
viscous flow with negligible inertial effect
{Helmholtz’s  minimum  dissipation  principle
(1868)}°!. Due to the important role played by the
N-S equations in science and engineering, especially
since the advent and the widespread application of the
finite element method in the mid 20th century, a great
deal of research interest and effort has been dedicated
to the search for VP of the N-S equations®™*],
unfortunately, however, only limited progress has been
achieved. Despite the conclusions about the
nonexistence of VP for the N-S equations reached by
Milikan® and Finlayson", a variety of non-standard
approximate VP models such as the restricted VP,
quasi-VP and pseudo-VP and so on has been
proposed™”®1. For the full N-S equations in primitive

variables, velocity W(=U.E,, & —unit vector along

the coordinate x;, i=1, 2, 3) and pressure p, Milikan, as
early as in 1929 @ first gave a negative answer to the
question of whether there exists a VP, assuming that
the lagrangian was a polynomial of the velocities and
their derivatives. Finlayson proved in 1972™ by means
of the Vainberg’s theorem that the W -P formulation
of the N-S equations had a VP only if the differential
operator was a potential one, i.e. either

Wx (Vxw)=0 or W-VW=0 (i.e. Stokes flow).

On the other hand, Carey was the first to notice that the
potentiality of the operator is the sufficient, but not
necessary, condition for the existence of a VPR Tonti
even claimed that VP can always be formulated for
every differential equation by an integrating
operator™, however, its application to flow problems,
especially to N-S equations, is still associated with
formidable difficulties. Another possible way out is to
define an enlarged(composite) system and to derive for
it a composite VP (e.g. by wusing Lagrange
multipliers)™ > 2 whose Euler equations consist of not
only the N-S equations but also the adjoint equations.
Apparently, this approach suffers from the serious
shortcoming that the number of the unknown functions
involved is doubled so that the problem is significantly
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complicated and requires much more mathematical
and computational work and is time-consuming and
costly. In Ref.[13] Ecer employed this method along
with a Clebsch-like transformation, but he did not
succeeded in reducing the number of unknowns to the
original one.
To bypass these difficulties, it should be
especially pointed out that although the existence of
primary VP{i.e.VP in terms of the primary

(primitive) variables W, p} is ruled out by the

Vainberg’s theorem it would be, nevertheless, still
possible instead to establish VP of alternative types:
mixed VP {i.e.VP in terms of some primary
variables and some adjoint(dual)variables} and/or
dual VP(i.e.\VP in terms of dual variables)"". Such a
primary/dual program approach is quite common in
linear and nonlinear programming theory, where the
dual program is preferred to use if it is simpler to
solve than the primary one. Proceeding just in this
way, in a previous paper™ the problem of
generating genuine (exact) VP for the N-S equations
in 3-D steady flow was successfully solved for the
first time by means of a systematic approach to the
search and transformation for VP and generalized
VP suggested previously by the present author™™ "1,
The essence of this systematic approach consists in
the properly joined use of a new method of
undetermined function and a reversed deduction
method via Lagrange multipliers.

In the present paper a similar approach™ is
followed to extend the mixed and dual VP of Ref.
[15] to the unsteady 3-D N-S equations.

2 Derivation of the First VP Family

2.1 Navier-Stokes Equations for 3-D Unsteady
Incompressible Viscous Flow
Using the Einstein’s index summation convention,
these equations for the Newtonian fluid have the
following nondimensional form*®!

M _y @)
ox;
TR TCL VR (2)

+ j i i
ot Pox;  ox

f ——body force per unit mass; i,

where P = V:
Yo

j=1~3; v=1/Re.
For the convenience of the later derivation of the
VP, it is expedient to introduce the pseudo-stream

functions IT, and IT, via the following relations™!

o, _, o, _ or, o,

) i) u
X, T X, o ax, o, :

@)
It is easy to see that the continuity Eq.(1") is
identically satisfied by Eq.(1), so that later on we will
always use Eq.(1) instead of Eq.(1).

2.2 Three Mixed VP
To derive the VP for the N-S equations in the form
of Egs.(1)&(2),according to the systematic approach
suggested in Refs.[16, 17] a trial functional | should be
constructed first via the undetermined function

F(u,,P,I1,,IT,) and the Lagrange multipliers A,

(k=1~6) as follows:
I(ui' P’H1vH2'ﬂvk) = JIII{F(UivPvnl’Hz)

t (Q)

+ii(%+u.%+£—vvzui— f,)
ot Pox;  ox
oIl oIl
+ A, (U, - LY+ A (u, — 2
4 (uy 5X3) s (U, axz)
SN OTELLE ?—2)}dth

aXl X5 (3)

with  dV=dx;dx,dxs.

At this point it should be emphasized that in order to
convert the N-S Egs.(1) & (2) to some part of the Euler
equations of the functional I, it is necessary and
sufficient to take the undetermined function F free of

the multipliers A, . Then by changing the form of the

function F we can change accordingly the form of the
adjoint equations, Egs. (4A-4D). Thus, the
incorporation of the undetermined function F in the
functional | offers us a new freedom to facilitate and
simplify the further treatment of the problem and just
this freedom can be used to advantage in alternative
ways, for example, for considerably extending the
applicability range of the Lagrange multiplier method
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in deriving and transforming VP or for removing the
variational crisis™*®and so on.
For the present problem under consideration the

next key step is to try to identify F and A, insucha

way that the total number of unknowns in Eq.(3) (12

variables: u;,P,IT,,IT,,4, ~ 44) could be reduced

to 6 {equal to the number of unknowns in the original
Egs. (1) & (2)} by eliminating any 6 of them. For this
purpose, we set ol =0, leading to the following set
of the Euler equations (i, j=1~3; k=1~6):

oA Egs. (1) &(2)

M. su, ot ox, (4A)
ou 5
+ A, —L-vWAi+ A, =0
0X;
oo _ 04 (4B)
OoP  0OX
ot s “0)
oll, 0OX; 0X,
ST, F 0k Ok
Al, X, X
(4D)

Here we have obtained a composite VP with the
composite functional 1 in Eq.(3) for the composite
system covering both the primary system Egs.(1) & (2)
and the adjoint system Eqs.(4A-4D) involving the

adjoint (or called the dual) variables A, and the

primary variables u;, P 11, & 11,. To identify F

and reduce the number of unknown variables, one
possible simple way is to put:

F_ o Fon Fopg Fog
oP , oIl , aIl, , o, , (5)
sothat F = (P?+11,°+11,%)/2 (6)

which apparently satisfies the integrability conditions for
the function F. ¥

Upon substituting Eq.(6), the adjoint Egs.(4A) ~ (4D)
can be simplified to the following form

= D OGO e, (TA)
ot OX; 0X;
p-94 (7B)
OX;
O0As OA
=82l (7C)
OX,  OX,
_ 04 _04s (7D)
, =
O0X,  OX,

Substituting Egs.(7C)-(7D)in Eq.(1) results in

u, = 0 [04s 04, (7E)
OXy \ OX,  0X,

u, = 2| %% 0% (7F)
0Xy | 0%,  0X,

.y 6(%_%}6[%_@ (7G)

ST ax ox,  ox, ) ox, | ox, ox,

It is interesting to point out that Egs.(7A)~(7D) are
something like the Clebsch transformation®“ and will

be employed later on for removing A

i+3 !

P .11, and

,.
Substituting the Euler equations(1) in Eqg.(3) to

eliminate u; and at the same time A, ~ A are

automatically removed, so we obtain the functional I,
of the following variational principle:

Mixed VP-I: o1, =0

I I (PIHI'HZ’ﬂ“i) = _!-.!-{_[_)’.{;(Pz +H12 +sz)
My %+E—qui - )XVt )
ot lox; ox
with u; represented by Eq.(1).
Itis easy to show that if we take the first variation of
the functional I,and set it equal to zero, we obtain the

following Euler equations:

+ 2

o/ Eq.(2)
5P p oM 8A)
0X;
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OH, 0oH,
00X, 00Xy

oIl | :

juu|
Il
I

oIl , : Il :6H276H3
27 ox,  ox,

where H; stand for the right hand side of Eq.(7A), so that
Eq.(7A) takes the form: H; =—A,,; , with which

EQs.(8B”)&(8C’) can be transformed into Egs.(7C)
&(7D)and in turn into Eq.(1) via Egs.(7E)-(7G). Thus
eventually we have the Euler equations of VP-I:
Egs.(1)&(2).

Using this VVP-I, we can obtain directly the numerical

solution of A4, P, 11, and 11, by the finite element

method (FEM). For practical use, however, it is also
required to have the u; fields calculated. This can be
simply done by means of Eq.(1).
If we insert Eq.(7B) in Eq.(8) to eliminate P, we
obtain the following new simpler variational

principles: Mixed VP-Il: o1, =0 and

|||(H1’H2’21):

- () e

) ) 0% A
+ 4 o, +U; o, +—— — W2, — f, | dVdt
ot OX;  OX;OX;

9)

with u; represented by Eq.(1).
Taking the first variation of the functional I;; and
set it equal to zero, we obtain the following Euler

equations:
. 2
O %+uj%+&—vvzui—f:0
ot OX;  0X;0X;
(9A)
which, upon inserting Eq.(7B), converts into Eq.(2).
ST,: . _ OH. 8H, (8B")
YUoax,  ox
ST, _0oH, oH, (8C")
27 ax, X,

which convert into Eq.(1) as shown above.

After the 11, , 11, , 4 fields have been

obtained from the VP-II by FEM, the practically
most interesting velocities u; and pressure P can be
calculated by Egs.(1) & (7B).

Since I, and I, contain both primary and dual
variables, they are called mixed variational
principles:

Mixed VP-II( A, =0 ): Still another mixed
variational principle can be derived by using Eq.(7A)
to eliminate the adjoint variables 4,, A, & 4, in

Egs.(7C) & (7D), giving

le( 4y, ai vvz)(gj: 8x)

o4, 04 ou.
(g% ax ai (Z% axlJ 82 (10)
m, - (§t+u aﬁ sz)(i‘?z)
AR

The corresponding functional I, (u;,4,) has

the
followingform

= [ (32

. A
+ A, ou; +ujau'+6 L _vviu, - f
ot OX;  O0X;0X;
6 u; ou;
AU M ey |y, - 2
6t OX; o, 0Xq
o(A,u; ou;
% (41;) -A—+W?, _aL
ot OX; ! ox, 0X,
0(A,u ou .
6/13 ( i) - A —L+vV?2,
ot P ox,
[u3 Lo J}dth (11)
2

where T1, & II, are represented by Eqgs.(10).

From ol,, =0 the Euler equations of the

VP-111 result:
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o4 : Eq.2)

ou,: Eq.(1)

If the pressure field is of interest, it can be readily
calculated from Eq.(7B) by simple differentiation.

2.3 ADual VP
Itis still possible to eliminate I, & II, inEq.

(9) via inserting Egs.(7C) & (7D), leading to the
following

Dual VP-1V: dl,, =0 and

oA, 6/11-
Iy (A,) = HQ) {K ax, j[ ox; J
. 8/16_6/14 2+ 61678/15 ’ 2
6X1 aXB 6X2 6X3

au; ou,  0°A,
+ A ——+ U, + —
ot "ox;  ox,0x;

—wW2u, — f, )ldvdt (12)
with u; represented by

_on,_ ook on
ook, 0xg\ Ox, 0%,

_am, o [%z}

20X, 0% | Ox, 0%,
gy o M oy 0 (04 O Ok
0%, 0OX, X\ OX,  OX, OXq
(13)

It can be easily shown that from dl ,, = 0 we obtain

the following Euler’s equations:

o4, : Eq.(9A), which converts into Eq.(2) via

Eq.(7B).
&y 1 0 [2UsrHy) 8+ H) g
X, X, X, -
(13A)
s 0 [0(Adg+H3) 9(As+H,) _ 0
0X,4 0X, 0X, -

(13B)

g 9 0(A, + H)) +i 0(As + H,)
0X, O0X,4 0X, 0X,

V%A, +H,)=0 (13C)

where G._ 0 0F
ox2  axi’

Using Egs.(13), (8B’) &(8C’), Egs.(13A)-(13C) can
be transformed into Eq.(1).

Based on VP-IV, we can obtain directly the A, -

fields by FEM. The practically important u; and P
can then be computed simply by means of Eq.(13)
and Eq.(7B) respectively.

3 Derivation of The Second VP Family

A second VP family can be derived by identifying
the undetermined function F in an alternative way. For
this purpose let us return to Egs.(4A) ~ (4D) and set

SF éF:ul oF

| | , (14A)
resulting in
F =TT, +u,IT, +U,lT, (14B)
and
i:l‘[1 izHz i:l‘[a
a A, o (14C)

where for convenience a new symbol IT, is intro-

duced instead of P. Obviously, Egs.(14A, B, C) satisfy
the integrability conditions of Ref. [16].

Using Egs.(14A, B, C) the Euler equations (4A) ~
(4D) take the following form:

_O4 04 | _Ok 0k | _ 0K
! 8Xl 6X3 2 6X2 6X3 ’ aXi (15A)
i=8/7.i+ -ali—ﬂ-auJ‘FVVzﬂi_liw

ot T ox b ox,

j i

(15B)

Thus we obtain the following VP:
Mixed VP-V:
Using the Euler Egs.(1) to eliminate u; in Eq.(3),

we obtain a new VP: dl, =0 and
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L) = [ {;ai(“ i)

_( o, of, I, + 4, —au‘+ujaui
0X, 0X, ot 0X

(16)

PRCLLETN R fij}dth
0X;

with u; represented by Eq.(1).

It is interesting enough to note that the
functional Iy in Eq.(16) can be simplified a lot by
dropping the first term under integral:
1 0 2\, due to the fact that its variation
2 ox, )

vanishes identically.

(l'[f+

From ol,, =0 we obtain the Euler equations of

VP-V as follows:

o4 1 Eq.(2)
oIl : 6H3+8H3_6H1:0 (16A)
0X, 0X, 0X,
51’12:61_13+5H3_6H2:0 (168)
0X, 0X, O0X,
oTl 3: 61_171+ &4_ aﬂ' =0 (16C)

0X, 0X, 5&7
Using Eq.(15B)(ie. 11, =-H,-4,,, ) and

Eq.(15A), Egs.(16A) ~ (16C) can be rewritten as Eq.
(1). Thus, eventually the Euler equations of the
VP-V are Egs.(2) and (1).

Applying the FEM to VP-V, we obtain

directly the A4, T1,, 1, and 11,(= P) fields

over the solution domain under study. After that the
corresponding velocity distribution u; can be
computed according to Eq.(1).

Furthermore, if Eq. (15B) is substituted in Eq. (16)

to eliminate TI1, and Eq.(1) is used in turn to
eliminate TT,, we obtain another Dual VP-VI:

o1, (4,)=0 with u; represented by Eq.(1).

4 Concluding Remarks

Two families of VPs for the full N-S equations of
3-D unsteady flow have been systematically

established herein for the first time. Thus, a new
rigorous theoretical basis for the finite element
analysis of viscous flow, especially for the direct
numerical simulation (DNS)of turbulent flow has been
founded.

It should be pointed out that as a rule, in almost
all existing VP in mechanics the physical meaning
of the functional is some kind of energy™®, the
functionals of all VP derived herein, in contrast, do

not have energy meaning since neither P nor u,IT,

have the dimension of energy. Perhaps, this might
be just the origin of the difficulty associated with the
derivation of the VP for the full N-S equations.
Fortunately, just recently we have succeeded in
generating an alternative dual VP family via
Friedrichs’  involutory  transformation®whose
functionals do have physical meaning of kinetic
energy. These dual VP can be easily generalized to
unsteady flow as well.

Evidently, our success in deriving VP for the N-S
equations is strongly due to the following two key
measures: 1)introducing the undetermined function F
in the trial functionals; 2)introducing the pseudo-
stream functions. Finally, the present approach and
results can be extended to viscous flows in a rotating
system (e.g. in turbomachines) as well as to
compressible viscous flows.
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