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Abstract:-As is well known, the search for the exact variational principles (VP) for the full Navier-Stokes equations of 
3-D viscous flow is an extremely difficult, still open problem in fluid mechanics. Just recently this problem for the steady 
flow case has been successfully solved for the first time via a systematic reversed deduction approach incorporating a 
method of undetermined function. As a further development of that, two VP families are generated herein for the 
unsteady flow case, providing a new rigorous theoretical basis for the finite element analysis of unsteady viscous flow, 
especially for the direct numerical simulation (DNS)of turbulent flow. 
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1 Introduction 
   The search for exact (genuine) variational 
principles (VP) for the full Navier-Stokes (N-S) 
equations of viscous flow, as is well-known, is an 
extremely difficult, longstanding open problem in fluid 
mechanics. Since the derivation of the N-S equations 
by Navier (1822) and Stokes (1845), up to now, in the 
literature there exist genuine VP only for two special 
cases: either for the inviscid flow {Bateman’s VP 
(1929); Herivel-Lin’s VP (1955-1959)} or for the slow 
viscous flow with negligible inertial effect 
{Helmholtz’s minimum dissipation principle 
(1868)}[1-5]. Due to the important role played by the 
N-S equations in science and engineering, especially 
since the advent and the widespread application of the 
finite element method in the mid 20th century, a great 
deal of research interest and effort has been dedicated 
to the search for VP of the N-S equations[1-13,], 
unfortunately, however, only limited progress has been 
achieved. Despite the conclusions about the 
nonexistence of VP for the N-S equations reached by 
Milikan[6] and Finlayson[1], a variety of non-standard 
approximate VP models such as the restricted VP, 
quasi-VP and pseudo-VP and so on has been 
proposed[1,7,8,]. For the full N-S equations in primitive 

variables, velocity w( iieu= , —unit vector along 

the coordinate x

ie

i, i=1, 2, 3) and pressure p, Milikan, as 
early as in 1929 [6], first gave a negative answer to the 
question of whether there exists a VP, assuming that 
the lagrangian was a polynomial of the velocities and 
their derivatives. Finlayson proved in 1972[1] by means 
of the Vainberg’s theorem that the -P formulation 
of the N-S equations had a VP only if the differential 
operator was a potential one, i.e. either 

w

0)( =×∇× ww  or 0=∇⋅ ww  (i.e. Stokes flow). 

On the other hand, Carey was the first to notice that the 
potentiality of the operator is the sufficient, but not 
necessary, condition for the existence of a VP[10]. Tonti 
even claimed that VP can always be formulated for 
every differential equation by an integrating 
operator[11], however, its application to flow problems, 
especially to N-S equations, is still associated with 
formidable difficulties. Another possible way out is to 
define an enlarged(composite) system and to derive for 
it a composite VP (e.g. by using Lagrange 
multipliers)[1, 3, 12] whose Euler equations consist of not 
only the N-S equations but also the adjoint equations. 
Apparently, this approach suffers from the serious 
shortcoming that the number of the unknown functions 
involved is doubled so that the problem is significantly 

 

Proceedings of the 4th WSEAS International Conference on Fluid Mechanics, Gold Coast, Queensland, Australia, January 17-19, 2007         130

mailto:liu_gaolian@hotmail.com


complicated and requires much more mathematical 
and computational work and is time-consuming and 
costly. In Ref.[13] Ecer employed this method along 
with a Clebsch-like transformation, but he did not 
succeeded in reducing the number of unknowns to the 
original one. 

To bypass these difficulties, it should be 
especially pointed out that although the existence of 
primary VP{i.e.VP in terms of the primary 

(primitive) variables w , p} is ruled out by the 

Vainberg’s theorem it would be, nevertheless, still 
possible instead to establish VP of alternative types: 
mixed VP {i.e.VP in terms of some primary 
variables and some adjoint(dual)variables} and/or 
dual VP(i.e.VP in terms of dual variables)[19]. Such a 
primary/dual program approach is quite common in 
linear and nonlinear programming theory, where the 
dual program is preferred to use if it is simpler to 
solve than the primary one. Proceeding just in this 
way, in a previous paper[15] the problem of 
generating genuine (exact) VP for the N-S equations 
in 3-D steady flow was successfully solved for the 
first time by means of a systematic approach to the 
search and transformation for VP and generalized 
VP suggested previously by the present author[16, 17]. 
The essence of this systematic approach consists in 
the properly joined use of a new method of 
undetermined function and a reversed deduction 
method via Lagrange multipliers. 

In the present paper a similar approach[15] is 
followed to extend the mixed and dual VP of Ref. 
[15] to the unsteady 3-D N-S equations. 

 

2  Derivation of the First VP Family 
2.1 Navier-Stokes Equations for 3-D Unsteady 

Incompressible Viscous Flow 
Using the Einstein’s index summation convention, 

these equations for the Newtonian fluid have the 
following nondimensional form[18]
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where ρ
pP = ;  f ——body force per unit mass;  i, 

j=1~3;  ν =1/Re. 
For the convenience of the later derivation of the 

VP, it is expedient to introduce the pseudo-stream 

functions 1Π  and 2Π  via the following relations[14]
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t is easy to see that the continuity Eq.(1’) is 
entically satisfied by Eq.(1), so that later on we will 
ways use Eq.(1) instead of Eq.(1’). 

2.2 Three Mixed VP 
To derive the VP for the N-S equations in the form 

of Eqs.(1)&(2),according to the systematic approach 
suggested in Refs.[16, 17] a trial functional I should be 
constructed first via the undetermined function 

),,,( 21 ΠΠPuF i  and the Lagrange multipliers kλ  

(k=1~6) as follows: 
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with  dV=dx1dx2dx3. 
At this point it should be emphasized that in order to 

convert the N-S Eqs.(1) & (2) to some part of the Euler 
equations of the functional I, it is necessary and 
sufficient to take the undetermined function F free of 

the multipliers kλ . Then by changing the form of the 

function F we can change accordingly the form of the 
adjoint equations, Eqs. (4A-4D). Thus, the 
incorporation of the undetermined function F in the 
functional I offers us a new freedom to facilitate and 
simplify the further treatment of the problem and just 
this freedom can be used to advantage in alternative 
ways, for example, for considerably extending the 
applicability range of the Lagrange multiplier method 
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in deriving and transforming VP or for removing the 
variational crisis[16, 17] and so on. 

For the present problem under consideration the 

next key step is to try to identify F and kλ  in such a 

way that the total number of unknowns in Eq.(3) (12 

variables: 6121 ~,,,, λλΠΠPu i ) could be reduced 

to 6 {equal to the number of unknowns in the original 
Eqs. (1) & (2)} by eliminating any 6 of them. For this 
purpose, we set 0=Iδ , leading to the following set 
of the Euler equations ( i, j=1~3;  k=1~6 ): 

kδλ :  Eqs. (1) & (2)                                          
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Here we have obtained a composite VP with the 
composite functional I in Eq.(3) for the composite 
system covering both the primary system Eqs.(1) & (2) 
and the adjoint system Eqs.(4A-4D) involving the 

adjoint (or called the dual) variables kλ  and the 

primary variables , iu P ,  & . To identify F 

and reduce the number of unknown variables, one 
possible simple way is to put:  
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which apparently satisfies the integrability conditions for 
the function F. [16] 

U
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    Substituting Eqs.(7C)-(7D)in Eq.(1) results in 
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It is interesting to point out that Eqs.(7A)~(7D) are 
something like the Clebsch transformation[1,4] and will 

be employed later on for removing 3+iλ , P , and 

. 

1Π

2Π

Substituting the Euler equations(1) in Eq.(3) to 

eliminate ui, and at the same time 4λ ~ 6λ  are 

automatically removed, so we obtain the functional II 

of the following variational principle: 

Mixed VP-I:   0=IIδ  
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with ui represented by Eq.(1). 
It is easy to show that if we take the first variation of 

the functional II and set it equal to zero, we obtain the 
following Euler equations: 

iδλ :  Eq.(2 )                                          

Pδ : 
i

i

x
P

∂
∂

=
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where Hi stand for the right hand side of Eq.(7A), so that 

Eq.(7A) takes the form: iiH +−= 3λ , with which 

Eqs.(8B’)&(8C’) can be transformed into Eqs.(7C) 
&(7D)and in turn into Eq.(1) via Eqs.(7E)-(7G). Thus 
eventually we have the Euler equations of VP-I: 
Eqs.(1)&(2). 
 Using this VP-I, we can obtain directly the numerical 

solution of iλ , P ,  and 1Π 2Π by the finite element 

method (FEM). For practical use, however, it is also 
required to have the ui fields calculated. This can be 
simply done by means of Eq.(1). 

If we insert Eq.(7B) in Eq.(8) to eliminate P, we 
obtain the following new simpler variational   

principles: Mixed VP-II : 0=IIIδ    and 
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with ui represented by Eq.(1). 

Taking the first variation of the functional III and 
set it equal to zero, we obtain the following Euler 
equations: 
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which, upon inserting Eq.(7B), converts into Eq.(2). 
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which convert into Eq.(1) as shown above. 

After the 1Π , 2Π , iλ  fields have been 

obtained from the VP-II by FEM, the practically 
most interesting velocities ui and pressure P can be 
calculated by Eqs.(1) & (7B). 

Since II and III contain both primary and dual 
variables, they are called mixed variational 
principles: 

Mixed VP-III( 0=IIIIδ ): Still another mixed 

variational principle can be derived by using Eq.(7A) 

to eliminate the adjoint variables 4λ , 5λ  & 6λ  in 

Eqs.(7C) & (7D), giving 
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The corresponding functional ),( iiIII uI λ  has 

the 
followingform
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where  & 1Π 2Π  are represented by Eqs.(10).  

From 0=IIIIδ  the Euler equations of the 

VP-III result: 
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iδλ :  Eq.(2)              

 iuδ :  Eq.(1)              
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f the pressure field is of interest, it can be readily 
lculated from Eq.(7B) by simple differentiation. 

2.3  A Dual VP 
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with ui represented by 
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It can be easily shown that from 0=IVIδ we obtain 

the following Euler’s equations: 

iδλ : Eq.(9A), which converts into Eq.(2) via 

Eq.(7B).                 
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sing Eqs.(13), (8B’) &(8C’), Eqs.(13A)-(13C) can 
 transformed into Eq.(1). 

Based on VP-IV, we can obtain directly the kλ - 

fields by FEM. The practically important ui and P 
can then be computed simply by means of Eq.(13) 
and Eq.(7B) respectively. 

  

3  Derivation of The Second VP Family 
A

th
th

 second VP family can be derived by identifying 
e undetermined function F in an alternative way. For 
is purpose let us return to Eqs.(4A) ~ (4D) and set 

3u
P
F
=

δ
δ

,
1

1

uF
=

Πδ
δ

,
2

2

uF
=

Πδ
δ

,            (14A)  

resulting in 

332211 Π+Π+Π= uuuF          (14B) 

and 

1
1

Π=
u
F

δ
δ

,  
2

2

Π=
u
F

δ
δ

,  
3

3

Π=
u
F

δ
δ

    (14C) 

where for convenience a new symbol  is intro- 

B, C) satisf

tions (4A) ~ 
(4D)

 

3Π

duced instead of P. Obviously, Eqs.(14A, y 
the integrability conditions of Ref. [16].  

Using Eqs.(14A, B, C) the Euler equa
 take the following form: 

3

4

1

6
1 xx

u
∂
∂∂ λλ

, 3

5

2

6
2 xx

u
∂
∂∂ λλ

i

i

x
u

∂
∂

=
λ

3−
∂

= −
∂

=
,    (15A) 
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∂
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∂
∂

=Π ii
i

j
j

j

i
j

i
i x

u
x

u
t

λλνλλλ

 (15B) 

   Thus we obtain the following VP: 

uler Eqs.(1) to eliminate ui in Eq.(3), 

we

Mixed VP-V:  
Using the E

 obtain a new VP: 0=IVδ  and 
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with ui represented by Eq.(1).  
 It is interesting enough to note that the 

functional IV in Eq.(16) can be simplified a lot by 
dropping the first term under integral: 

( 2
2

2
1

32
1

Π+Π
∂
∂
x

), due to the fact that its variation 

vanishes identically. 

From 0=VIδ  we obtain the Euler equations of 

VP-V as follows: 

iδλ :  Eq.(2)                   

1Πδ : 0
3

1

1

3

1

3 =
∂
∂

−
∂
∂

+
∂
Π∂

x
H

x
H

x
      (16A) 

2Πδ : 0
3

2

2

3

2

3 =
∂
∂

−
∂
∂

+
∂
Π∂

x
H

x
H

x
     (16B) 

3Πδ : 0
2

2

1

1 =
∂
∂

+
∂
Π∂

+
∂
Π∂

i

i

xxx
λ       (16C) 

Using Eq.(15B)(i.e. 3+−−=Π iii H λ ) and 

Eq.(15A), Eqs.(16A) ~ (16C) can be rewritten as Eq. 
(1). Thus, eventually the Euler equations of the 
VP-V are Eqs.(2) and (1). 

 Applying the FEM to VP-V, we obtain 

directly the iλ , ,  and  fields 

over the solution domain under study. After that the 
corresponding velocity distribution u

1Π 2Π )(3 P=Π

i can be 
computed according to Eq.(1). 

Furthermore, if Eq. (15B) is substituted in Eq. (16) 

to eliminate and Eq.(1) is used in turn to 

eliminate , we obtain another Dual VP-VI: 

iΠ

iΠ

0)( =kVII λδ  with  ui  represented by Eq.(1). 

 

4  Concluding Remarks 
T

3-

es
ri
an
nu
fo

wo families of VPs for the full N-S equations of 
D unsteady flow have been systematically 

tablished herein for the first time. Thus, a new 
gorous theoretical basis for the finite element 
alysis of viscous flow, especially for the direct 
merical simulation (DNS)of turbulent flow has been 
unded. 

It should be pointed out that as a rule, in almost 
all existing VP in mechanics the physical meaning 
of the functional is some kind of energy[1,16], the 
functionals of all VP derived herein, in contrast, do 

not have energy meaning since neither PP

2 nor iiu Π  

have the dimension of energy. Perhaps, this might 
be just the origin of the difficulty associated with the 
derivation of the VP for the full N-S equations. 
Fortunately, just recently we have succeeded in 
generating an alternative dual VP family via 
Friedrichs’ involutory transformation[20]whose 
functionals do have physical meaning of kinetic 
energy. These dual VP can be easily generalized to 
unsteady flow as well. 

E
eq
m
in
st
re
sy
co

 

 

l 
r 
r, 

vidently, our success in deriving VP for the N-S 
uations is strongly due to the following two key 
easures: 1)introducing the undetermined function F 
 the trial functionals; 2)introducing the pseudo- 
ream functions. Finally, the present approach and 
sults can be extended to viscous flows in a rotating 
stem (e.g. in turbomachines) as well as to 
mpressible viscous flows.  
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