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Abstract 
In order to improve the accuracy of computation of climatological ocean-atmosphere turbulent fluxes  
a special type of distribution belonging to the family of the double-exponential type is proposed. 
Analysis of air-sea fluxes in the North Atlantic shows that the applied distribution effectively 
describes statistical properties of the ocean-atmosphere turbulent fluxes of heat and moisture. An 
optimal algorithm for the quantitative determination of the distribution parameters is derived along 
with the methodology for estimation of the confidence limits for the parameters. The distribution is 
utilised to the computation of statistical parameters of turbulent heat fluxes in the Gulfstream area of 
the North Atlantic. It is shown that the application leads to the improvement of the accuracy of 
climatological flux estimates and allows estimating of extreme fluxes crucially important for 
quantification of the role of sea-air interaction in the ocean and atmosphere dynamics.  
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1. Introduction: motivation 
 and formulation of the problem 
 
Turbulent fluxes of sensitive (Qh) and 

latent (Qe) heat are responsible for the 
adiabatic heating of the lower atmosphere and, 
thus, for the generation of atmospheric 
cyclones [2-3]. These fluxes also force the 
ocean circulation and form the boundary 
conditions for the ocean general circulation 
models [1,6] Thus, accurate estimation of 
climatological, monthly and seasonal grided 
fields of air-sea turbulent heat fluxes is one of 
today’s burning issues of marine climatology. 
Of a special importance is the analysis of 
statistical characteristics of surface turbulent 
flux distributions and estimation of extreme 
air-sea flux values. Observations and 
diagnostic studies [7] particularly show that 
these are strongly localised in space and in 
time extreme fluxes of heat and evaporation 

what is responsible for the generation and 
explosive development of atmospheric 
cyclones over the ocean. Observations also 
show that deep convection in the Labrador 
Sea, steering the ocean meridional circulation 
is provided by locally very high surface 
turbulent fluxes, occurring on space scales of 
tens of kilometres and time scales of tens of 
hours. 

Currently, numerical weather 
prediction (NWP) models in a data 
assimilation mode provide high resolution (6-
hourly in time and 50 to 200 km in space) 
global fields of atmospheric variables, 
including surface fluxes for the last several 
decades, the so-called reanalyses. Although 
widely used, these flux products are only 
loosely connected to nature, being largely 
influenced by the NWP model used. 
Moreover, reanalyses due to relatively coarse 
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resolution do not resolve effectively the 
extreme turbulent fluxes.  

Global turbulent flux fields can be also 
derived from the observations of merchant 
ships in the Global Ocean. In these products 
surface turbulent fluxes are computed from the 
observed sea surface and air temperatures, 
humidity, wind speed and atmospheric 
pressure using the so-called bulk aerodynamic 
algorithms. Although the achievements of the 
last decades provide quite accurate (about 5%) 
estimations of the turbulent flux from 
individual observation[2], this does not yet 
guarantee reliable representation of statistical 
distribution and accurate estimation of 
climatological flux fields from individual 
estimates for the reason of high sampling 
uncertainties inherent in the flux products 
based on ship observations. 

As a result, we still know a little about 
statistical properties of the distribution of 
surface turbulent fluxes, especially in poorly 
sampled areas. This limits our abilities to 
accurately compute the moments and 
probability distributions of the surface 
turbulent heat fluxes and characteristics of 
extreme fluxes from a limited number of flux 
estimates for a given grid cell and time period. 
Moreover, a proper estimation of the impact of 
sampling on these characteristics can not be 
performed without explicit knowledge of the 
type of statistical distribution and its 
parametric estimates. Distributions of the other 
meteorological variables are well fitted by the 
known probability density functions (PDF), 
such as Gamma PDF for precipitation or 
Weibull PDF for the wind speed [10]. 
However, for surface turbulent fluxes such a 
distribution has not yet been found.  

Values of surface turbulent fluxes can 
vary within the range from -500 to 2000 W/m2 
for Qh and from small negative values to 2000-
4000 W/m2 for Qe with the modal values lying 
in the range from -50 to about 1000 W/m2. 
Climatological distributions of turbulent fluxes 
reveal local maxima in the mid and subpolar 
latitudes, characterised by the strongest short-
period synoptic and mesoscale variability. 
Underestimation of this variability is the main 
source of sampling uncertainties in 
climatological flux estimates. When the 
number of observation during for example, 
one month period, is higher than 50-100, direct 
averaging typically provides an adequate 
estimation of characteristics of statistical 

distribution. However, when the number of 
observations drops to several observations per 
month, out of major ship routes, e.g. in the 
subpolar Atlantic and Southern Ocean, their 
direct analysis tells a little about statistical 
structure of turbulent fluxes.  

Figure 1 shows empirical occurrence 
histograms of the surface turbulent fluxes for 
the winter season (JFM) of 1996 in the Gulf 
Stream region of the North Atlantic. These 
graphs were derived from 6-hourly high 
resolution surface fluxes diagnosed by the 
NWP model of European Centre for Medium 
Range Weather Forecasts (ECMWF) in a data 
assimilation mode. Although influenced by the 
model performance, model reanalysis is 
capable of simulating reliable synoptic 
variability of surface turbulent fluxes. [5]. For 
both sensible and latent heat fluxes the 
occurrence histograms imply more heavy tails 
of the distributions in the range of high 
positive values, where positive fluxes are 
directed form the ocean to the atmosphere, and 
thus, strong asymmetry of the PDF. In 
different regions air-sea flux data can exhibit 
different skewness and kurtosis. The modal 
values and long-term means are typically 
positive, although in some areas they can be 
negative. The occurrence histograms in Figure 
1 imply that the distribution of surface 
turbulent fluxes likely can be modelled by the 
family of the double exponential distributions 
(2ePDF). 

The family of double exponential 
distributions has the density distribution 
function: 

)())(exp(),()(, ydGyayf nμψθμθμ −= (1)                        
with the parameters n,, μθ  and arbitrary 
functions α, ψ, G. The constant ),,( na θμ  is 

chosen to make . There are 

several studies of the properties of double 
exponential distributions and various aspects 
of its applications. In particular, this family 
has been used to generalize the exponential 
regression models [4-5] who applied the 
double exponential distribution to the two-way 
contingency tables. Some schemes for the 
estimation of the distribution parameters have 
been suggested in [9]. However, they proposed 
neither specific formulas for maximum 
likelihood estimation nor a numerical 
algorithm for the determination of parameters.  

∫
∞

∞−

= 1)()( ydGyf
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The aim of our study is to justify the 
application of the 2ePDF for the analysis of 
turbulent fluxes, to derive basic moments and 
estimates of statistical significance and to 
quantify the limits of the application of 2ePDF 
for this crucially important geophysical 
problem. After a general formulation of the 
distribution we will derive the maximum 
likelihood estimators for the parameters. For 
this purpose we will suggest an effective 
algorithm solving the maximum likelihood 
equations and will prove the existence and the 
uniqueness of the solutions. Additionally, we 
will also derive interval estimates, and, thus, 
will derive the confident limits for the 
distribution parameters. Finally we will 
present an example of the application of 
2ePDF for the analysis of surface turbulent 
fluxes in the Atlantic.  

2. Mathematical model  

of the distribution  

of surface turbulent fluxes 

In order to describe the probability 
distribution of the air-sea turbulent fluxes 
during continuous time (e.g. month or season) 
(Figure 1) the following distribution can be 
considered: 

))exp(exp()exp()( xxxP βαβαβ −−= (2)                                            

where  is a density function with 
variable x representing either Qh or Qe, α and β 
are the location and scale parameters 
respectively. Of these parameters α is assumed 
to be positive and β is negative. Obviously, the 
distribution  defined by (2) belongs to 
family (1). As we mentioned above, Weibull 
distribution is commonly used to describe the 
wind speed in a wide range of time scales. 
Wind speed along with temperature and 
humidity gradients in near-surface layer 
represents one of the key-parameters for 
estimation of surface turbulent fluxes using 
bulk formulae. Eq. (2) implies a similar type of 
distribution, however, it accounts for the well 
pronounced asymmetry with respect to zero 
flux, shown in Figure 1. We can note that the 
distribution (2) can be obtained from a 
Weibull distribution by the replacement of 
variable , leading to the 

equation , y>0, 
representing a Weibull distribution. Integration 

of (2) results in the following expressions for 
the mean and variance:  

)(xP
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where C is the Euler constant, appearing 
through the integration. If each member of 
sample  is distributed according to 
(2), the likelihood function can be given as: 

nxxx ,..., 21
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 ,                     (4) 

where n is the number of observations, 
),...( xxx 1 n=  denotes the vector of flux 

values and ),,(xp α β  stands for the density 
of the joint distribution of the vector of flux 
values. In this case the natural logarithm of the 
likelihood function can be presented in the 
following form: 

)exp()log()log(

)),,(log(),,(

11
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(5) 
and the maximum likelihood estimators should 
satisfy to the equations: 
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=

∂
∂

∂
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∂
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 (6).                           
β

Equations (6) lead to the following system of 
equations: 
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0>=y
βα )( y−

,ln xx
βαβ)( eyyP −=

whose solution should further provide us with 
the parameter estimators. From (7) and (8) the 
following statement is valid: 

Theorem 1. The solution of the 
equations (7)-(8) provides the maximum 
likelihood estimation, i.e. the maximum of 
likelihood function (4). If all observed values 
are not equal in the vector , the 
solution of (7) - (8) will contain the root 

),...( 1 nxxx =

0,0 * <>∗ βα  and this root will be unique on 
the intervals ,0 ∞<< α  0<<∞− β . 

Proof. The proof is not difficult, but is 
not obvious at the same time. Actually, one 
needs to prove three statements. In order to 
prove the statement that the solution of 
equations (7)-(8) really provides the maximum 
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of function (4), it is sufficient to show, that the 
matrix of the second derivatives 

),,( 222112,11 iiiiI = , 
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is negatively defined. Denoting for brevity 
),,( βαxL  through L, direct calculation gives 
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The negative (positive) definition of the matrix 
I is equivalent to the fact that the set of matrix 
eigenvalues is negative (positive). The latter 
results in the two statements: 

(a)  ( ), 0)( <ISP 0)( >ISP
(b) , 0)det( >I

where  is the trace of matrix (sum of its 
diagonal elements) and det(I) is the matrix 
determinant. Indeed, SP(I) is the sum of 
eigenvalues and  is their product. If 
conditions (a) and (b) hold, both eigenvalues 
are negative (positive). The condition (a) is 
obvious (because 

)(ISP

)det(I

α  is positive) and the 
condition (b) is the consequence of the 
inequality 
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representing a partial case of the Jensen’s 
inequality. Thus, the first part of the statement 
is proved. In order to prove the existence and 
the uniqueness of the negative (positive) 
solution of (7)-(8), these equations can be 
rewritten in the following equivalent form: 
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Clearly, Eq. (13) independently on β -
parameter, requires α  in (13) to be always 
positive and unique if the β  is unique. Thus, 
we can further focus on the β  parameter only. 
According to the theorem 1 conditions, there 

are several different values in the 
observational sample. Without the loss of 
generality, let’s assume the first k observations 

 (k ≤ n) to be negative and  to be a 
maximum negative value, i.e. for any i < k, 

kxx ,...1 kx

ki xx ≤ . When observations  are 
fixed, both left hand and right hand sides of 
the relation (12) represent continuous 
functions of β. The left hand side varies from 

 to 

nxx ,...1

∑
=

−=
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i
ixnS
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1 ∞−  with β going from ∞−  

to zero, remaining negative. The right hand 
side of (12) can be represented as  
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In (14) the terms with indices greater then k 
vanish when β goes to -∞. For the terms with 
the indices less or equal k a simple 
mathematical transform gives: 
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The last expression converges to  and since 

 is the minimum of sample, the inequality 

 holds. When β equals 0, 

the right hand side of (15) equals S. This 
means that the variability of the left hand side 
of the equality (12) overlaps the range of the 
variability of the right hand side and, hence, 
due to continuity, the root of (13) exists. Its 
uniqueness follows from the monotonic 
variability of the left hand side of the relation 
(13). Thus, the statement is proved. Formulas 
(12) and (13) define the pointed maximum 
likelihood estimators 

kx

kx

k

n

i
i xxnS ≥= ∑

=

−

1

1

∗∗ βα , . It is possible to 
obtain their asymptotic joint distribution when 

∞→n , n being the sample length. 
theorem2. The vector 

),( *ββαα −− ∗n  is distributed 
asymptotically as the two-dimensional 
Gaussian vector with zero mean and 
covariance matrix , where I is the 
informational matrix defined above and 

),(1
∗∗

− βαI
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),(1
∗∗

− βαI  is its inverted matrix 
when ),( *ββαα == ∗ . 

Proof. The proof of this statement 
follows from the general statement [8] for 
regular distributions, and the fact, that the 
Weibull distribution is regular. It is needed to 
examine the validity of the following 
conditions: 

A1.Derivatives 2

2 ),(log,),(log
θ

θ
θ

θ
∂

∂
∂

∂ xPxP
 

exist and are bounded within some interval 
containing the roots of the equations (11)-(12). 
Through θ we denote the vector of parameters 
(α, β) and through 

2

2 ),(log,),(log
θ

θ
θ

θ
∂

∂
∂

∂ xPxP
 we denote the 

corresponding partial derivatives to α, β.  
A2. The mathematical 

expectation 0),(
=

∂
∂

θ
θxPE , if ∗= θθ  (the 

estimated value of the parameter). 
These conditions are verified directly. 
Corollary. The confident intervals for 
parameters with 95% significant level will be 
given as an internal domain of the ellipse  
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Returning to the original variables, we yield its 
final parametric expression: 
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              (18),                                                                     

where )1(3 ρ+=R  and ϕ  varies from 0 to 
2π.  

Now let us turn to the optimal 
algorithm of the computation of the roots of 
(7) and (8). 

Theorem 3. Let 0α , 0β  be an initial 
iteration, lying within the 
interval 201 cc <<α , 001 << βc  where 

 are some constants, lying within the 
interval 

21, cc

max21min xccx <<<  and 
 are minimum and maximum 

values of the sample respectively. Then the 
algorithm, realising the iterative scheme 

maxmin , xx
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(20) 
will converge to the equilibrium 
point ),( *βα∗ , which is the unique solution of 
(7) and (8). 

Proof 
As it follows from the proof of 

theorem 1, if its conditions hold, the sequence 
of iterations lβ  defined by the equality (20) is 
monotonic (when lα is known). Hence, as it is 
also bounded, this sequence has a limit. The 
same is valid for lα .The only possible limit 
must be the root of the equations (12) and (13), 
which exist according to the theorem 1. This 
completes the proof of the theorem 3. 

 
 
3. Application of the double-

exponential distribution 
 to the computation  
of the averaged turbulent fluxes 
 
We will now apply the derived 

double-exponential distribution for the 
evaluation of statistical parameters of surface 
fluxes in the Gulf Stream area characterized by 
the strongest mean values and the most intense 
variability of surface turbulent fluxes. Due to 
high intensity of synoptic variability poor 
sampling in this crucially important area may 
significantly affect the accuracy of 
climatological estimates of surface turbulent 
fluxes. Figure 1 shows approximations of 
empirical histograms of sensible and latent 
heat fluxes by the double-exponential 
distribution, presented above. This distribution 
fits well to the data and k-s test returns the 
probability of the distribution to be of the kind 
of (2) of higher than 96.7%.  
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During the NEWFOUEX-88 
experiment carried out in winter season of 
1988 research vessels collected time series of 
hourly observations of surface meteorological 
parameters of exceptionally high quality. In 
Figure 2 we show estimates of the sensible and 
latent heat fluxes for the location 42°N, 44°W 
in Newfoundland basin for the period from 
01.03.1988 to 21.03.1988, computed using the 
COARE-3 algorithm [2] from the directly 
observed surface meteorological data. In the 
vicinity of this observational point for the 
same period contribution of the VOS data 
consisted of 26 reports sampled within the 
radius of 50 km from the research vessel 
location. To achieve comparability we 
subsampled the original time series at exactly 
the same UTC time instances as VOS reports 
were taken. The differences between the 
turbulent flux estimates derived from the VOS 
data and from the regular time series were 
within ±5 W/m2. It is obvious, that VOS 
sampling is not adequate to reflect the actual 
variability of surface turbulent fluxes in the 
Gulfstream area. 

The results of estimation of statistical 
characteristics of turbulent fluxes are given in 
Table 1. Direct averaging of the flux estimates 
for the 20-day period gives sensible and latent 
heat flux values, which are respectively 25% 
and 20% smaller than those derived from the 
high resolution data. Application of the double 
exponential distribution to the undersampled 
time series returns the mean values which are 
respectively 13% and 9% smaller than those 
derived using 2ePDF from the large sample. 
Of a special importance is that application of 
the double exponential distribution allows for 
the estimation of 95% and 99% percentiles of 
turbulent fluxes. These estimates are crucially 
important for the quantification of the role of 
extreme fluxes in the ocean and atmospheric 
dynamics because these are extreme fluxes 
what determines the generation of the most 
intense cyclones in the atmosphere and the 

most dramatic convection events in the ocean. 
These percentiles expose differences of about 
10%, when estimated from the undersampled 
data compared to the regularly sampled data. 
However, it is important that the double 
exponential distribution allows for the 
estimation of extreme fluxes, while the raw 
data do not. 

Figure 3 shows PDF of the sensible 
and latent heat fluxes, derived from the 
regularly sampled and undersampled data. 
These PDF were computed according to Eq. 
(2). Clearly, the PDF for the regularly sampled 
data imply higher mean and extreme fluxes 
compared to the undersampled time series. 
Figure 4 shows the ellipses implying the 
confident limits for the parameters estimated 
for sensible and latent heat fluxes from the 
regularly sampled and undersampled time 
series in the α, β – plane. Remarkably, the 
ellipses derived for the data with small sample.  
 

Further application of the double-
exponential distribution to the global ocean 
may help to derive the next generation 
monthly and seasonal of surface turbulent 
fluxes climatology. In contrast to the routinely 
averaged surface fluxes, such a climatology 
will minimize sampling errors, which are quite 
large in poorly sampled areas (e.g. subpolar 
latitudes of the Northern Hemisphere and 
Southern Ocean), where they are significantly 
higher than the other uncertainties inherent in 
flux computations [7]. This will provide more 
accurate estimates of surface turbulent fluxes 
and will considerably improve our 
understanding of their climate variability. 
Moreover, this climatology will provide a 
wide spectrum of the surface turbulent flux 
statistics which cannot be derived form the 
raw data. These statistics, first of all extreme 
fluxes will stay as imply considerably larger 
confident limits for α, and β in comparison to 
the confident intervals for the regularly 
sampled time series.  

 
 
 

Acknowledgements. This study is supported by 
Russian Foundation for Basic Research (grant 
05-65-439) and by Ministry of Education and 
Science of Russian Federation. We thank Jeff 
Kepert and Eric Schultz of BMRC 
(Melbourne) for helpful comments on the 
manuscript. 

Proceedings of the 3rd WSEAS International Conference on Mathematical Biology and Ecology, Gold Coast, Queensland, Australia, January 17-19, 2007         63



 
Table 1. Example of estimation of turbulent heat fluxes in the Gulfstream area for the period 01.03-

21.03.1988 using direct averaging and the double exponential distribution.  
 

 Sensible heat Latent heat 
 26 samples 484 samples 26 samples 484 samples 
Mean (raw averaging), 
W/m2 

98 131 264 331 

Std (raw averaging), 
W/m2 

86 102 156 234 

Mean (2ePDF), W/m2 112 129 292 322 
Std (2ePDF), W/m2 92 99 171 195 
Location parameter 2.731 2.978 5.190 4.642 
Scale parameter, W/m2 -14.16 -12.91 -7.63 -6.55 
95%-percentile, W/m2 283 315 608 688 
99%-percentile, W/m2 401 441 824 937 

 
 
 
Figure captions 
 
Figure 1. Occurrence histograms (grey bars) of the sensible heat flux (A) and latent heat flux (B) in the 
Gulfstream region for the winter season of 1988 and the double exponential PDFs fitted to the empirical data 
(bold lines). 
Figure 2. Estimates of sensible (solid line) and latent (dashed line) heat flux derived from 1-hourly observations 
during NEWFOUEX-88 experiment in March 1988 (484 observations) and sensible (closed circles) and latent 
(open circles) fluxes computed only for the moments when VOS observations were available (26 observations). 
Figure 3. Double-exponential PDFs fitted to the estimates of sensible (A) and latent (B) heat fluxes in the 
Gulfstream region for the period 01-21 March 1988 using high resolution regularly sampled data (dashed line) 
and undersampled data (solid line). 
Figure 4. Ellipses, implying confident limits for the sensible and latent heat flux estimates for the period 01-21 
March 1988 in the Gulfstream area. The graph is overploted with the flux values for given α and β (dashed 
lines). 
 
 
Figure 1. Occurrence histograms (grey bars) of the sensible heat flux (A) and latent heat flux (B) in the 
Gulfstream region for the winter season of 1988 and the double exponential PDFs fitted to the empirical data 
(bold 
lines
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Figure 2. Estimates of sensible (solid line) and latent (dashed line) heat flux derived from 1-hourly observations 
during NEWFOUEX-88 experiment in March 1988 (484 observations) and sensible (closed circles) and latent 
(open circles) fluxes computed only for the moments when VOS observations were available (26 observations). 
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Figure 3. Double-exponential PDFs fitted to the estimates of sensible (A) and latent (B) heat fluxes in the 
Gulfstream region for the period 01-21 March 1988 using high resolution regularly sampled data (dashed line) 
and undersampled data (solid line). 
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Figure 4. Ellipses, implying confident limits for the sensible and latent heat flux estimates for the period 01-21 
March 1988 in the Gulfstream area. The graph is overploted with the flux values for given α and β (dashed 
lines). 
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