
DART: The Distributed Agent-Based Retrieval Toolkit

MANUELA ANGIONI, ROBERTO DEMONTIS, MASSIMO DERIU,

EMANUELA DE VITA, CRISTIAN LAI, IVAN MARCIALIS,

ANTONIO PINTUS, ANDREA PIRAS, ALESSANDRO SORO, FRANCO TUVERI

CRS4 - Center for Advanced Studies, Research and Development in Sardinia

Polaris, Edificio 1, 09010 Pula (CA)

ITALY

{angioni, demontis, mderiu, emy, clai, ciano, pintux, piras, asoro, tuveri}@crs4.it http://www.crs4.it

Abstract: The technology of search engines is evolving from indexing and classification of web resources based on

keywords to more sophisticated techniques which take into account the meaning and the context of textual information

and usage. Replying to query, commercial search engines face the user requests with a large amount of results, mostly

useless or only partially related to the request; the subsequent refinement, operated downloading and examining as

much pages as possible and simply ignoring whatever stays behind the first few pages, is left up to the user.

Furthermore, architectures based on centralized indexes, allow commercial search engines to control the advertisement

of online information, in contrast to P2P architectures that focus the attention on user requirements involving the end

user in search engine maintenance and operation. To address such wishes, new search engines should focus on three

key aspects: semantics, geo-referencing, collaboration/distribution. Semantic analysis lets to increase the results

relevance. The geo-referencing of catalogued resources allows contextualisation based on user position. Collaboration

distributes storage, processing, and trust on a world-wide network of nodes running on users’ computers, getting rid of

bottlenecks and central points of failures. In this paper, we describe the studies, the concepts and the solutions

developed in the DART project to introduce these three key features in a novel search engine architecture.

Key-Words: Search Engine, Geo-Reference, Semantics, NLP, RDHT, DART, 3D-UI, Community, P2P.

1 Introduction
The web is the largest and most untidy data source

people can use. Search engines help people to find

information, although, often, not exactly the information

they need. While indexing and querying such a large

amount of resources is within the capabilities of

commercial search engines, the ability to filter, select

and separate what is relevant to the user.

To date, users know that most of the results they get in

reply to a query, are useless or only partially related to

their requests, and are resigned to choose by hand,

usually among the first few results, and to ignore all the

rest. While query results can be improved refining the

request to make it more precise, a real efficacy increase

can only be achieved introducing the context and the

meaning as fundamental concepts in query resolution

and formulation. A further weakness is the analyse of the

deep web: the Web not accessible through the search

engines [1].

The new generation of search engines requires advanced

features and new architectures to find the virtual web

objects (i.e. HTML pages, images, videos, and any kind

of files) and especially concrete objects and services, on

which search engines have to focus their next effort. The

users want information about real object characteristics,

available products in a supermarket or a shop, a parking

space close to home, the nearest restaurant to their

current position, the post office with shorter waiting

time, and so on. These are categories of information

required to support nomadic people, to satisfy the human

desire of knowledge and to improve the quality of life.

To address such wishes, the new search engine should

focus on three key aspects:

• semantics,

• geo-referencing,

• collaboration / distribution.

Semantic analyses let automatic systems to create a

structure able to give the right meaning to groups of

words according to the contiguous sentences and solving

misunderstandings related to thesaurus and slang

expressions, improving web information retrieval,

knowledge management and enterprise application

integration.

Thanks to the management of geo-referenced data, the

user will submit questions related to the position

specified by latitude-longitude coordinates or by place

names. The search engines will automatically process

reverse geo-coding either during the page parsing and

user query processing while mobile objects and people

will spontaneously notify their position.

Collaboration is the best solution to find the invisible

web and to distribute the processing power required to

scan and catalogue its pieces of information. It is a

collaboration between remote peers but specially it is a

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 425

user collaboration. In fact they may provide their help

submitting directly new resource and offering storage

space and bandwidth of their Internet connection. In

such way, there is no central control system, avoiding

bottlenecks and central points of failures, and the

ranking system will be public.

In this paper we expose the studies, the concepts and the

solutions developed in the DART project to introduce

semantics, geo-referencing and collaboration features in

a search engine. Section 2 provides a general overview

of its architecture and the main modules. The following

sections, from 3 to 8, describe each module exposing the

indexing and storing solutions, the semantic processing,

the resource submitting and the HMI proposed to user.

2 The DART Project
DART stands for Distributed Agent-based Retrieval

Toolkit and it is a research project aimed at studying,

developing and testing patterns and integrated tools to

achieve a semantic, distributed geo-sensible search

engine, defined focusing on users requirements and

giving them the possibility to be involved in search

engine activities.

The spreading of mobile devices and wireless networks

makes possible the definition of a system able to support

mobile users and manage information related to their

position where submitted queries are automatically

enriched using their profile, the device profile and the

position context. The adoption of a semantic approach in

resource cataloguing and in query resolution allows

results filtering increasing the overall response quality,

while the computation is distributed on a network of

nodes directly managed by the user community.

The wide range of technological aspects of such search

engine suggests to design the DART node using a

modular approach (see Fig. 1).

A set of Data Providers collect information parsing web

pages, accessing Peer-to-Peer (P2P) networks, reading

Universal Description, Discovery and Integration

(UDDI) registries, grabbing Electronic Program Guide

(EPG) messages. Such information is processed by the

Semantic Module that delivers the utilities of distributed

indexing and storing layer to add resources on the

catalogue of the node network. Furthermore, sensors and

ad-hoc applications automatically and periodically push

values to the DART system.

The Query Module receives requests submitted by users

through web pages, web services, or ad-hoc applications

embedded in portable devices. The queries are enriched

with the user profile, the device profile and the position

related information and forwarded to the semantic

module to be addressed The search results are collected

and filtered using again the user profile, the device

profile and the context information and returned.

Fig. 1. Architecture of the DART Community Node.

An Autonomous Interface Agent (AIA), Searchy, runs as

a web browser extension and provides advice during the

browsing session. Finally, the DART Community Node

includes an administration application in order to allow a

basic parameterized configuration of the system, like

starting or stopping the web crawling and specifying

TCP, UDP, HTTP ports.

3 The DART Community Node
The DART Community Node sets up the main software

entity for the DART project both for architectural

aspects and prototypal points of view. It is composed of

distinct interconnected software modules, each one

providing a specific functionality to the system.

DART Community Nodes can be used and employed in

several configurations, from closed nodes clusters to the

scenario of a totally open web based community

composed by users, as shown in Fig. 2. The last one is

the configuration to let us to achieve the target of a node

collaboration in indexing and storing crawled web

information.

Users can join the DART community simply installing a

community node on their computer, becoming capable to

share computation resources with the community,

contribute to the web crawling (as in [2]) and participate

to a distributed storage keeping a portion of the

information of the global index.

In its default configuration a DART Community Node is

able to perform a network discovery step, in order to

retrieve another community node and join to the

community. The node is capable to collect data coming

from Data Providers, for example a web crawler, and

then forward specific types of collected data to the

Semantic Module for semantic analysis and cataloguing.

That module uses the DDBMS module to properly store

processed data. Other data types, such as web links,

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 426

extracted from web pages, are directly examined and

stored in the DDBMS, wrapped with a special data

descriptor which specifies metadata and useful

information for distributing the crawling tasks.

Using the DART Community Node, users contribute to

the realization of a complete, updated, and public web

snapshot where they are able to explore and retrieve

information and resources contained via a semantic,

personalized and flexible query resolution.

Fig. 2. A full open community of DART Community

Nodes.

4 DHT and Distributed DBMS
DART users are supposed to contribute to the system in

terms of storage and CPU cycles, but also sharing

information as occurring in P2P applications. As a

backend to DART, an efficient, robust and scalable

distributed file system is required and Distributed Hash

Tables (DHTs) over a P2P overlay have extensively

proven to meet these requirements.

The most important features related to DHTs can in fact

be summarized as follow:

• efficiency and scalability, the number of messages

exchanged to route a query to its destination is

O(log(N)), where N is the total number of nodes;

• no maintenance, no administrative operations are

required, no central authority or complex process is

required to maintain, balance or fix the distributed

data structure;

• simplicity, the algorithms behind DHTs are relatively

simple to understand and implement;

• robustness, the ability to survive massive failures is a

key aspect when deploying largely distributed

applications, such as file sharing applications.

DHTs can store and retrieve efficiently a huge amount of

information, but queries require an exact knowledge of

the resource ID (the key). This excludes many

applications, in which the key is known only

approximately, i.e. a geographical position, or is known

to fall within a range, i.e. a time interval.

The DART project defines a DART Network Overlay,

called DDBMS, whose goal is to support a wide variety

of distributed applications, by providing a flexible,

efficient, and robust distributed file system, capable of

range queries. We call this file system RDHT (Range

capable Distributed Hash Table) [3].

The RDHT file system is inspired by the skip lists [4],

though in RDHT we lose the concept of different levels

of pointers, in exchange for a self-organized backbone.

The storage of index information, as well as any other

operation, is built on top of the Kademlia [5] protocol.

Index information is maintained in terms of pointers that

link each element stored to its neighbours. Pointers do

not get deleted in consequence of new inserts, as they do

not link each element to its next, but simply represent a

linear ordering relation. Storing a pointer from an item A

to an item B means: B is greater than A. If subsequently

a new element C is inserted in the RDHT that falls

within A and B, while new pointers get stored from a A

to C and from C to B, the old pointer from A to B remain

valid, as the relative position of A and B is unchanged.

Note that old pointers get gradually stretched to form a

backbone that is used in fast lookup operations. Thanks

to such organized pointers, it is always possible to

reconstruct the complete list, even if for each value

several neighbours are known: the element next to a

given element E can be simply reached choosing the

shortest possible pointer that has E as its base.

Also note that range queries only make sense if the items

stored can be ordered with respect to one or more

attributes. The RDHT stores only integer values. The

transformation from Objects attributes to integer values

is application specific: for certain applications a

lexicographic order, resulting in a list, can be applied. In

geographic applications, for instance, linearization is

often used to represent n-dimensional coordinates. For

example geographical coordinates can be linearized

using a z-curve [6], i.e. interleaving the bits of the X and

Y (or longitude and latitude) coordinates of the spots to

obtain a single integer value. Items’ coordinates are

represented as an integer value, that is a point in the z-

curve, and the limits of a query for a rectangular region

are translated to a linear interval of the z-curve itself. It

simplifies store and retrieve operations.

The RDHT exposes four primitive operations: lookup,

nearest, insert and range. Low level primitives, relative

to the DHT operations, like join, ping, etc. are

implemented in the Kademlia network overlay, and will

not be described here.

Lookup operation discovers an item stored in the data

structure. It starts from a known value and executes

several lookup operations on the underlying DHT, in

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 427

order to fetch index information. Pointers from the base

to the target value are fetched in a recursive algorithm

that executes at each step the longest possible jump that

do not overshoots the target element. The lookup

operation fails if the shortest possible jump from every

known base overshoots the target value.

Nearest primitive simply consist of a lookup operations

that, instead of failing if the given target is not found,

simply returns the immediate successor and predecessor

of the target value, that is: if the base is smaller than the

target and the next to the base is greater, then these two

elements are those nearest to the target.

Insert operations execute first a lookup to spot the

nearest elements A and B to the target in the RDHT;

only if the lookup fails the new element gets stored and

pointers from A to target and from target to B are stored

in the RDHT.

Range queries are banally executed following the

shortest pointers from the lower bound to the upper

bound of the query. Alternatively a range query can be

executed searching for the items nearest to the

median(lb, ub), and then repeating this operation

recursively over the two subintervals until no new

element is discovered or a given grain is reached. This

second strategy can be easily parallelized.

Note that there is no remove primitive, once stored an

item cannot be deleted. This implies that malicious

removal of data is not possible.

5 Collecting data
We have identified two ways which DART system can

retrieve information. In the first one, a module

specialized in a data category reads and pre-processes

data. If it requires a semantic analysis, data are

forwarded to Semantic Module, otherwise it is given to

DDBMS Module to be stored on RDHT.

The second approach is the submission of event

disclosed by a sensor, an application or users.

5.1 The Data Providers
The Data Provider is a family of software modules able

to retrieve resources available from the web, from P2P

network or collected by iTV, and to process them in

order to retrieve all relevant information to be sent to

Semantic Module for indexing or directly storing on the

DDBMS.

Each node contributes to crawl according to the

hardware configuration and user’s preferences. The

crawling is distributed because every node, according to

the optimization policy, can decide to assign the

crawling of a resource to another node. The crawling

functionality has to be switched on or off according to

the user preferences. If it is switched off, the node does

not participate to the crawling but can still offer the

support for the other functionalities.

Some P2P bridges retrieve information from the existing

resources on the other P2P networks (i.e. Gnutella,

eDonkey2K, etc).

To collect EPG information and forwarding it to DART

system, a tailored grabber may be installed on STBs (Set

Top Boxes) and media centers.

Regarding to Web Services (WSs), a module inquiries

UDDI registries in order to discover WSs. A special WS

data provider is the GIS Data Provider. It indexes

metadata and WSs described in a Catalogue Web

Service [7]. Such data includes maps described in image

or XML format and generated using Web Map Service

[8] and Web Feature Service [9].

5.2 The Event Producer
The Event producer is a family of software modules able

to produce dynamic information stored in DART system.

To distinguish those from the other information we call

them events.

The events can be generated by:

• sensors (RFID, etc.) installed on the device that

hosts the DART node;

• peripherals installed on the device that hosts the

DART node;

• local applications installed on the device that

hosts the DART node;

• remote applications which require the DART

node to save information;

• the user who wants to notify something to the

system.

6 Semantic content management
Web development makes available documents and

services in great number whose categorization,

presentation and availability are making the information

retrieval a very relevant topic.

In DART, we introduce semantic techniques, like

ontologies and Natural Language Processing (NLP)

tools, in order to exceed search engines limits. The

Semantic Module analyses the collection of words, the

relative weight, the link between them and the way they

are semantically connected and processes the queries

with reference to their semantic. These techniques allow

to process queries formulated in Natural Language and

find documents with the same semantic concept,

ensuring in this manner a good level of relevance of the

data provided to the user. Fig.3 depicts the Semantic

Module parts and correlations with Data Providers ad

DDBMS module.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 428

Fig. 3. The Semantic Module.

This module exchanges information with Data Providers,

asking for resources, processes a semantic analysis on

textual resources, by means of NLP techniques in

addition to interpretation based on specific ontologies of

annotated documents,. It uses the interface with the

DDBMS Module to create a semantic indexing of

ontology-based annotated resources and categories.

Moreover it makes a semantic analysis and a

categorization of queries received by the Query Module,

resolves them and return results to the Query Module.

Its components are:

• the Syntactic Disambiguator is essentially

composed by a syntactic analyzer, that uses the

Link Grammar parser [10], a highly lexical,

context-free formalism, to identify the

syntactical structure of phrases and sentences, in

order to resolve the roles of terms ambiguity

present in natural languages;

• the Semantic Disambiguator analyses each

phrase identifying roles, senses of terms and

their semantic relations in order to extract “part

of speech” information, the synonymy and

hypernymy relations from WordNet [11] and to

change the representation from words contained

in a document to a density function based on the

synonyms and hypernyms frequency [12];

• the Categorizer manages resources and queries

classification by means of text categorization

techniques;

• the Semantic Net Manager manages the building

of the Semantic Net, composed by a set of

topics linked through their senses, and uses it to

enrich results with topics semantically related to

queries submitted by users.

6.1 Semantic querying
In searching phase, the Semantic Module performs

searches by keywords, by queries expressed in natural

language and by categories, enriched by related topics

given by the Semantic Net Manager.

The query, submitted through the Query Module

Interface, is analyzed by the Semantic Module

components obtaining a set of keys. Then, it is

categorized and user feedback process starts to refine the

range of the query, working on results threshold and

categories lists. Undesired keys for the context are

eliminated and a new list of categories updates the

categories list previously given by the Semantic Module.

Then results are returned to the Query Module.

6.2 Semantic Indexing

The Semantic Indexing is performed by a collaboration

between the Semantic Module and Data Providers. The

web resource is parsed by a specific Data Provider who

identifies, into its content, structured (annotated) and

unstructured (not-annotated) portions. The semantic

indexing of a structured document is quite simple, by

using the ontology or the structure descriptor. Otherwise

a not annotated portion of a document needs a linguistic

analysis of its content. The Data Provider indexes the

structured portions of the document while the Semantic

Module its unstructured parts.

In this paragraph we describe two examples of such

different situations. The first one describes the semantic

analysis of a not annotated document. In this case the

semantic interpretation is performed by the Semantic

Module. The text is split in phrases.

Some NLP tasks are executed for each phrase: extraction

of “parts of speech” and syntactical relations by means

of the Syntactic Disambiguator, the semantic analysis,

the extraction of senses by means of the Semantic

Disambiguator and the extraction of categories by means

of the Categorizer. Disambiguation plays an important

role in semantic index realization because reducing the

false positive in the search phase. After the semantic

analysis of each phrase, the Semantic Module catalogues

documents applying text categorization techniques and

writes all acquired information in the DDBMS.

The second situation is related to the semantic indexing

of annotated text, performed on dynamic XML

documents generated by WSs. They are not considered

by search engines because their indexing is possible only

if functionalities, contents and concerning ontologies of

a WS are known a priori. In the DART project, the

dynamic content of specified classes of WS is indexed

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 429

by a specific Data Provider that knows their

functionalities and the representative ontology. However

dynamic content generated by WS can contain portions

of not annotated text that need NLP instruments to be

interpreted. Those data can be accessed by means of a

sense or a category key, based on their description, or by

means of a geographical key. To manage this task the

text is submitted to the Semantic Module.

7 Submitting queries
The Query Module has the responsibility to collect user

queries, process them and perform a forwarding to the

Semantic Module. It is composed by a set of

components.

The Query Manager builds a user interface (UI)

dependent on: the device used by users to query the

system, the particular user context and the searched

resourced type. UIs are developed using HTML,

VoiceXML, X3D and XUL (XML User Interface

Language) whereas B2B interfaces are implemented

through SOAP (Simple Object Access Protocol) and

REST (Representational State Transfer) based WSs.

The Device Manager is delegated to provide information

useful for an optimal rendering of graphical user

interfaces processing information collected by the virtual

assistant installed on user device (see section 8.2).

Furthermore, it has the responsibility to use device

features for enriching user queries and to support results

filtering in collaboration with the Result Collector

module.

The User Manager provides user information details to

the Query Manager, in query enrichment task, and to the

Result Collector, for results filtering.

The Result Collector receives the collection of results

from the Semantic Module. It processes a more accurate

filtering of the results thanks to data provided by the

User Manager.

Thanks to the Event Manager, the user can configure a

DART Node in order to produce an alert when a

particular event happens. The Event Manager is

responsible of the user subscription for a particular type

of event. The subscription is wrapped in a query and

stored on the DHT. When the subscription is satisfied by

an event, a notification is automatically forwarded to

subscribers.

8 HMI in DART
The Human Machine Interaction (HMI) is an open and

important question in ICT research. In scientific

literature, several works study the design for more

intuitive, adaptable and accessible user interfaces. One

of the most interesting arguments is how the user can

submit a question to the machine and how the machine

provides the answer. In the web, such tasks are delegated

to the search engines. Their scientific research and

technology evolution has been focused firstly into the

development of new algorithms for query processing,

indexing of resources, and data caching. The most used

search engines have homologated the procedure to

submit a query and to present the results to the user.

Except rare case, the results are showed like a collection

of HTML pages that contains a list of resources with a

brief description, if the total number of results exceeds

the number of results that can be showed in a single

page, new pages are generated. This type of web UI is a

“de-facto” standard, specially because it’s easy to use

and simple to manage.

In the DART project, we aims to offer to the users a

different approach, focusing our attention around three

different points: to have an exhaustive user profile; to

implement an intelligent virtual assistant and to show a

3D visualization of query responses.

8.1 User Profile in DART
The user profile collects all user data which the system

uses to execute the login, to screen query results, to

support the user in normal web navigation and to

perform independent actions. These data items are stored

in a server in order to be available for any device. They

are downloaded into the client at the beginning of the

session and remotely saved every time they are modifies

by the user or the system. Format and amount of data

can change in relation to the used device.

The DART User Profile ranges from personal

information to friends, houses, jobs and hobbies. The

virtual assistant detected data autonomously, including

the login time and position, resources viewed (sites,

pages, movies, WSs, etc.), the time spent on a page and a

site, the pages added in browser bookmarks.

8.2 Searchy
An interesting research line is the study, the

development and the implementation of a virtual

assistant. It is an AIA that assists and interacts with the

user during a browsing session. We have called it

Searchy and it is an extension for Mozilla Firefox. Its

tasks are to analyse user requests, if available data

related to user position, downloaded pages and suggest

related links, arguments, names or words. According to

software agent features, Searchy is not an intrusive

extension. It does not limit user interactions and it can be

disabled anytime.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 430

Fig. 4. Correlation between web browser, Searchy and

DART Node.

The operative modality of Searchy can be divided in two

different phases. The first one is absolutely transparent

for the user who can carry out his work on the Web

without knowing what Searchy is doing. In fact, every

times the user, through the web browser, requests a new

web page, Searchy intercepts HTTP request and

analyzes the downloaded page. The first step of this

analysis is to understand the page topics, this work is

referred by Searchy to the Semantic Module which can

extract topics and links of the page and combines the

found subjects with a taxonomy of known topics. At the

same time Searchy analyzes the user navigation session

and the user profile (including the temporary context of

the user). So, combining page topics, history and user

profile, Searchy composes a query to submit to DART.

The second phase of the its processing is related to

receive the DART response. The virtual assistant

analyzes response, screens the list, removes banned or

useless sites and performs the list ordering. Finally,

Searchy shows the list in a side-bar of Mozilla Firefox.

8.3 3D User Interface for results.
In the DART project we explore the concepts of post-

WIMP user interface in order to overcome the limits of

XML-based UI, specially in terms of effectiveness and

usability. These limits have driven the need of a new

interface able to show results in a suitable, concise, and

more effective way.

We have adopted a 3D visualization to allow the user to

change the point of view, improving the perception and

the understanding of contents [13]. In a 3D space, a user

can easily understand the meaning of an object, simply

rotating, shifting, and moving it. If the representation is

suitable for the search context, the objects are easy to

explore, and the related information are learned faster

and better.

The 3D module provides an interactive representation of

results designing 3D visual search interface

characterized by concrete representations and simplicity

[14]. It is an optional layer that could be used in base of

the user preferences and on the context. According to the

search context it provides a three-dimensional view,

building an X3D [15] document that contains the most

suitable scene. Moreover it could provide different

layouts for different cases ([16] and [17]).

The choice of X3D as language to describe virtual world

has been driven by its features, specially because it is a

standard based on XML, and it is supported by a large

community of users.

Fig. 5. The 3D-UI module.

The module parts are:

• a web application is the interface between the

DART Node and the front-end of the system. Its

tasks are to submit the query originated in the

browser to the search engine, to forward results

to the ResultCollector, and finally to encapsulate

and to send the X3D document to the browser.

• ResultCollector, has the role to collect the list of

results and process their arrangement according

to file type and/or the relevance.

• 3D Manager receives the list of results and

generates on the fly the X3D document that

offers an interactive 3D scene with the search

results. Subsequently it sends the document to

the web application that makes it available to the

user browser.

9 Related Work
Semantics aware search engine and frameworks based

on ontologies are developed as a search technology for

the semantic web (examples are [18], [19] and [20]).

The application of P2P paradigm to realize a distributed

search engine architecture is targeted at getting rid of the

typical problems of centralized systems, such as network

overload, single point of failure, censorship, lack of

scalability. Examples of community oriented

architectures for geographic based services are exposed

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 431

in [21], [22], [23] and [24], while [25], [26] and [27] are

examples of distributed search engines.

P2P systems have the problem to process range queries.

Unstructured systems address it flooding queries to all

peers in the network, thus requiring O(N) messages. P-

Trees [28] and Prefix Hash Trees [29] are scalable

solutions requiring to store a distributed indexing data

structure in the P2P network itself, and use this to guide

range queries. We propose the adoption of an overlay

adding primitives to manage range queries on the

Kademlia system.

Regarding HMI, in order to improve the DART

usability, the studies focused on 3D UI for the

visualization of results and the virtual assistant. Searchy

combines several aspects described on various works: an

advice system (like [30] and [31]), the automatic update

of user preferences by the analyse of web-browsing

behaviours ([32]) and the use of user profile to complete

user requests ([33]).

10 Conclusions
In this paper, we have presented the DART project and

the patterns and technologies exploited in the design of a

distributed, semantic and context aware search engine.

The goal of this research project is to provide users with

a powerful toolkit for indexing online resources in a

distributed and open database, managed by users

themselves, and effectively querying this database with

all the power and flexibility of natural language. DART

includes tools to support personalization and

management of the user profile, and is specifically

designed to be accessed from virtually any device,

adapting to the specific capability and the context of use.

It aspires to overcome many limitations of current search

engines, through state of the art technology in distributed

systems, semantic web, and human machine interaction,

Furthermore it is focused on the main goal of leveraging

the birth of an online community of users, that share

storage and computational power to the common

objective of indexing and searching digital resources.

The DART project has been partially funded by the

Italian Ministry of University and Scientific Research,

contract grant number 11582.

References:

[1] M. K. Bergman, The Deep Web: Surfacing Hidden

Value, Journal of Electronic Publishing, University

of Michigan Press, Vol. 7, 2001.

[2] B. T. Loo, O. Cooper, S. Krishnamurthy,

Distributed Web Crawling over DHTs,

http://digitalassets.lib.berkeley.edu/techreports/ucb/te

xt/CSD-04-1305.pdf.

[3] A. Soro, C Lai, Range-capable Distributed Hash

Tables, in Third International Workshop on

Geographic Information Retrieval - GIR’06, Seattle

– USA, 2006.

[4] W. Pugh, Skip Lists: A probabilistic alternative to

Balanced Trees, in Workshop on Algorithms and

Data Structures, 1990.

[5] P. Maymounkov, D. Mazières. Kademlia: A peer-to-

peer information system based on the xor metric, in

IPTPS ’01: Revised Papers from the First

International Workshop on Peer-to-Peer Systems,

London - UK, Springer-Verlag, 2002, pp 53–65.

[6] H. V. Jagadish, Linear clustering of objects with

multiple attributes, in ACM SIGMOD International

Conference on Management of Data (SIGMOD’90),

1990, pp. 332–342.

 [7] Open Geospatial Consortium, "Catalogue Web

Service",

http://www.opengeospatial.org/standards/cat.

[8] Open Geospatial Consortium, "Web Map Service",

http://www.opengeospatial.org/standards/wms.

[9] Open geospatial Consortium, "Web Feature

Service",

http://www.opengeospatial.org/standards/wfs.

[10] D. D. Sleator, D. Temperley, Parsing English with

a Link Grammar, in Third International Workshop on

Parsing Technologies, 1993.

[11] Wordnet, http://wordnet.princeton.edu.

[12] S. Scott, S. Matwin, Text Classification using

WordNet Hypernyms, in COLING/ACL Workshop on

Usage of WordNet in Natural Language Processing

Systems, Montreal, 1998.

[13] J. Biström, Al Cogliati, K. Rouhiainen, Post-

WIMP User Interface Model for 3D Web

Applications, Helsinki University of Technology

Telecommunications Software and Multimedia

Laboratory.

 [14] B. Houston, Z. Jacobson, A Simple 3D Visual Text

Retrieval Interface, in TRO-MP-050 - Multimedia

Visualization of Massive Military Datasets.

Workshop Proceedings, 2002.

[15] Web 3D Consortium - Overnet.

http://www.web3d.org.

[16] W. Wiza, K. Walczak, W. Cellary, AVE - Method

for 3D Visualization of Search Results, in 3rd

International Conference on Web Engineering

ICWE, Oviedo – Spain, Springer Verlag, 2003.

[17] N. Bonnel, A. Cotarmanac’h, A.Morin. Meaning

Metaphor for Visualizing Search Results, in

International Conference on Information

Visualisation, IEEE Computer Society, 2005, pp.

467–472.

[18] U. Straccia, R. Troncy, Towards Distributed

Information Retrieval in Semantic Web, in 3rd

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 432

European Semantic Web Conference (ESWC-06).

Springer Verlag, 2006.

[19] L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y.

Peng, P. Reddivari, V. Doshi, J. Sachs, 2004.

Swoogle: a search and metadata engine for the

semantic web, in Thirteenth ACM international

Conference on information and Knowledge

Management, Washington – USA, ACM Press,

2004, pp. 652-659.

[20] C. Rocha, D. Schwabe, M. P. Aragao, A hybrid

approach for searching in the semantic web, in 13th

international Conference on World Wide Web, New

York - USA, ACM Press, 2004, pp. 374-383.

[21] S. Balram, S. Dragicevic, Collaborative

Geographic Information Systems: Origins,

Boundaries and Structures.

[22] D. Carboni, S. Sanna, P. Zanarini, GeoPix:

Image Retrieval on the Geo Web, from Camera Click

to Mouse Click, in MobileHCI'06, Helsinki - Finland,

ACM Press, 2006

[23] J.H. Guan, S.G. Zhou, L.C. Wang, F.L. Bian,

Peer to Peer Based GIS Web Services, in XXth ISPRS

Congress, Istanbul – Turkey, 2004.

[24] A. M. MacEachren, G. Cai, R. Sharma, I.

Rauschert, I. Brewer, L. Bolelli, B. Shaparenko, S.

Fuhrmann, H. Wang, Enabling Collaborative

Geoinformation Access and Decision-Making

Through a Natural, Multimodal Interface.

International Journal of Geographical Information

Science.

 [25] A. Singh, M. Srivatsa, L. Liu, T. Miller, Apoidea:

A Decentralized Peer-to-Peer Architecture for

Crawling the World Wide Web, in SIGIR 2003

Workshop on Distributed Information Retrieval,

Lecture Notes in Computer Science, Volume 2924,

2003.

[26] Yacy, http://www.yacy.net/yacy.

[27] J. Callan, Distributed information retrieval,

Advances in Information Retrieval, Kluwer

Academic Publishers, 2000, pp. 127-150.

[28] A. Crainiceanu, et Al, Querying Peer-toPeer

Networks Using P-Trees, in WebDB Workshop,

2004.

 [29] S. Ramabhadran, S. Ratnasamy, J. Hellerstein,

S. Shenker, Prefix Hash Tree - An Indexing Data

Structure over Distributed Hash Tables, 2004.

[30] L. Chen, K. Sycara, WebMate: a personal agent for

browsing and searching, in Second international

Conference on Autonomous Agents, Minneapolis -

United States, ACM Press, 1998, pp. 132-139.

[31] H. Lieberman. Letizia: An agent that assists web

browsing, in International Joint Conference of

Artificial Intelligence, Montreal - Canada, 1995.

[32] Y. Seo, B. Zhang, Learning user's preferences by

analyzing Web-browsing behaviours, in Fourth

international Conference on Autonomous Agents,

Barcelona - Spain, ACM Press, 200, pp. 381-387.

[33] G. L. Somlo, A. E. Howe, Using web helper agent

profiles in query generation, in AAMAS '03:

second international joint conference on Autonomous

agents and multiagent systems, ACM Press, 2003,

pp. 812-818.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 433

