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Abstract: - The extreme miniaturization of devices has led to increasing concerns about the steady and 
transient thermal behavior. The conventional Fourier analysis leads to some error. Structures with dimensions 
in micrometers or nanometers can be fabricated with modern film deposition and patterning techniques. It is 
proven neither Fourier nor non-Fourier wave model provide sufficient details for the transient response in 
casting sand. Recently a two-step process to describe the thermal energy exchange between the solid and the 
gaseous phases in short times is introduced for thermal conduction. In solids, heat is carried by electrons and 
lattice waves, whose quanta are phonons. In dielectrics and semiconductors, the phonon contribution is 
dominant. The present study develops heat transfer regime map for a  transient symmetrical sphere without 
source term with a prescribed constant temperature at the surface. The solution is carried out by finite 
difference scheme and results are discussed. The boundary between the Fourier, non-Fourier and dual-phase-
lag model is determined. It is shown that at the short time both the non-Fourier and dual-phase-lag produce a 
temperature jump at the interface. The comparison suggests that both models can be useful tool in dealing with 
transient heat conduction problems from nano to macro . 
 
Key-Words: -   Fourier, non-Fourier, dual-phase-lag, heat transfer regime. 
 
1   Introduction 
Recent applications involving very low temperatures 
near absolute zero, a heat source, such as a laser or 
microwave with extremely short duration or very 
high frequency, a very high gradients, and extremely 
short time, non-homogeneous material, like sand 
and glass bids, materials with inner structures and 
slow thermal responses, like processed meat or 
biological tissues, micro and nano scale 
applications, like electronic devices account for the 
phenomena involving the finite propagation velocity 
of the thermal wave, the classical Fourier heat flux 
model should be modified. While Fourier's law 
considers infinite speed temperature for heat 
propagation with its parabolic form, the famous 
hyperbolic equation,given by Cattaneo and Vernotte, 
has removed the paradox of instantaneous heat 
propagation[1,2].They suggested independently a 
modified heat flux model as: 
 

q(t+ qτ , r) = -k ∇ T(t, r)            (1) 
Where k is the thermal conductivity, q is the heat 
flux, t is the time, r is the radius, T is the 
temperature and τ is the thermal relaxation time. 

     Where qτ  is the time needed to accumulate 
energy for significant heat transfer between 
structural elements. The first-order Taylor expansion 
of q in Eq. (1) with respect to t, and eliminating of q 
between the equations of energy conservation in the 
form of :  
 

                                                     (2) 
 

    Where ρ is the density and Cp is the thermal 
capacity. 
    Which leads to the classical hyperbolic heat 
conduction equation (CV):  
 
                                                                          (3)        
        
     Where α is the Thermal diffusivity. An enhanced 
version of hyperbolic equation is the dual phase lag 
model (DPL) which discussed by Tzou [3]. The 
dual-phase-lag model allows either the temperature 
gradient to precede the heat flux vector or vice-versa 
in the transient process. Mathematically, this can be 
represented by:  
 

q(t+ qτ , r) = -k ∇ T(t+ Tτ ,r)      (4) 
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where, τT is interpreted as a measure of the 
conduction that occurs along microscopic paths not  
captured by classical approach during non-
equilibrium. Following the same procedure as stated 
for obtaining of the hyperbolic heat transfer equation 
, for the DPL effect yields: 
 
                                                                   
                                                                      (5) 
 
     Where: 
 
                              ,                                (5-a) 
 
     Where eα is the thermal diffusivity of the 
electron gas and  CE     is thermal wave speed. 
       here, two distinct relaxation times appear. For 
crystal dielectrics τq is the relaxation time of 
momentum non-conserving processes in a phonon 
system and τT is from the same order of ordinary 
processes conserving the momentum. In metals τq 
has the same relaxation behavior as wave 
conduction of electrons and τT represents the 
phonon-electron interactions. This equation reduces 
to corresponding relation for the hyperbolic model 
by setting τq to zero. Also, it reduces to the relation 
for Fourier conduction of the classical approach by 
setting both τq and τT to zero (i.e. a homogeneous 
material). 
     The wave nature of heat propagation has been 
topic of many investigations, especially in terms of 
analytical and numerical solutions. Most studies 
related to one dimensional hyperbolic heat 
conduction in a semi-infinite or a slab and few in 
cylindrical or spherical form, to mention some; the 
physical meaning of the relaxation time in the non-
Fourier equation for non homogeneous inner 
structure materials has been considered by Kaminski 
[4].The heat transfer regime maps for 
microstructures relating a geometric length scale to 
temperature was developed by Flik et al [5]. 
Majumdar illustrated the analogy between micro 
scale conduction in dielectrics and radiative transfer, 
and presented a regime map for diamond films[6] . 
Ozisik et al [7]. investigated the propagation and 
reflection of thermal waves, and the semi-infinite 
plate with oscillatory surface and the result of the 
thermal shock wave was elaborated by Tzou [8]. A 
clear and exhaustive theory as a base for further 
works was given by Ozisik et al [9]. A symmetrical 
sphere within time varying heat source at constant 
physical properties was analyzed by 
Pourmohamadian et al [10]. It was shown for time 
decaying heat source, the non-Fourier and Fourier 

effect was not significant. The model was 
generalized from the macroscopic dual-phase lag 
concept (DPL) which considers the lag of two 
macroscopic phases: temperature gradients and heat 
flux by Tzou [11]. The model covers a wide rang of 
physical responses from microscopic to macroscopic 
scales in both space and time. The difference 
between the equilibrium and the noneqilibrium 
temperatures under the effect of the DPL heat 
conduction was studied by Al-Nimr et al [12]. 
Recently, the DPL model of heat conduction was 
used by Antaki  which to offer a new interpretation 
for the evidence of non-Fourier conduction in the 
experiments with the processed meat[13]. It was 
shown that the DPL model provides a more 
comprehensive treatment of the heterogeneous 
nature of the meat compared to the interpretation 
that used CV heat conduction model. In the present 
study, a symmetric spherical solid with the constant 
physical properties is analyzed for both CV and 
DPL and FO model. The solutions are carried out by 
finite difference method and compared with 
analytical Fourier heat conduction solution. 
 
 
2   ANALYSIS  
The basic formulation of the DPL model in a single-
phase medium for a symmetrical sphere body 
subjected to surface temperature at r=R is : 
 
 
                                                                               (6) 
 
      Where: 
 
                                                                              (7) 
 
      With the following initials and boundary 
conditions: 
 

T=Ti     ,       0=
∂
∂

t
T

    at      t=0            (8-a) 

T=Ts  at   r=R  and                 at  r=0      (8-b) 
    
 To solve this problem, above equation should be 
discretized. The discretization can be done in many 
ways using Finite Difference Method (FDM) or 
other numerical schemes. In this work a FDM 
adopted and domain divided into fine meshes. Then, 
the finite form of the described equation can be 
written after defining the scheme of difference 
approximation for time and space. Using the central 
difference scheme for approximating the time and 
space derivative, one obtains the following equation: 
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                                                                              (9) 
The geometry and physical conditions of the cases 
are considered as follows: 
R=0.005m, ,/103.0 26 sm−×=α sq 94.8=τ ,

sT 48.4=τ , Ti=10 oC,  Ts=37 oC.   
     Which of the physical properties are those of 
sand is considered and for meat  : 

,/101396.0 26 sm−×=α sq 14=τ ,                       .                         
.For convergence, ∆T=0.0001 sec and 

41094.2 −×=∆r  m is chosen. 
 
 
3    Results and Discussion  
The numerical computation is preformed in order to 
display the temperature profile arising from a 
surface heat at r=R. First, the effect of numerical 
accuracy is investigated. Table 1 compares the 
numerical computation with the analytical solution 
as indicated in Carslaw et al. [14]. which is: 
 
 
 
                                                                             (10) 
     Good agreement between the numerical solution 
and analytical solution are shown and the error is  
approximately 1.6e-5 for the indicated time and 
space interval. 
     The simulation results of temperature profile as 
time increases at nodes which are closer to the 
surface are shown in Fig.1-3 for FO, CV and DPL 
model respectively. Higher and wavy shape 
temperature is obtained for CV as expected due to 
the nature of the equation. The DPL model predicted 
similar behavior as FO model but lowers in the 
interior nodes due to its time delayed nature. 
     The ratio of temperature gradient to heat flux 
relxation time is varied from 0.004 to 0.95 for DPL 
model and is shown in fig.4. It shows temperature 
prediction as time increases. As the temperature 
gradients approaches to zero, here 0.004, the relation 
reduces to the CV model and by setting close to one, 
here 0.95, the solution reduces to the FO model 

which is obviuos. Similar observation was shown 
experimentally by Antaki for processed meat [13]. 
Next, Fig.5 shows that the DPL prediction 
approximately captures the first rapid changes in 
temperature change in the medium at starting time 
and then sudden decrease follows. The jump in 
temperature is higher for small relaxation times ratio 
and lowers as this ratio approaches to one. 
      In order to judge the difference between FO, CV 
and DPL temperatures, Fig.6 at position R=0.95 is 
ploted at different  times. From the present results, it 
is seen that the CV solution predicts a jump in 
temperature and then converges to FO values as 
time increases. This is due to the finite speed of heat 
propagation phenomenon. The DPL model describes 
similar trend as of FO model and this is the lagging 
response in transient condition and conveges close 
to the FO values as time increases. The difference 
between FO and DPL reflects the delayed time of 
the micro-structural interaction effect relative to the 
fast transient inertia as stated by Tzou [1997].  
     Fig.7 compares temperature profiles after one 
second at interior nodes. The temperature for CV 
and DPL models are higher than the FO model 
because of the presence of time delays. The CV 
model drops sharply  and the converges to the FO. 
The DPL  drops sharply at front and then follows the 
same trend as the FO model. 
 
 
4 Tables and Figures 

 
 

 
 

Table 1: Comparison between numerical and 
analytical results for FO model 

 
 
 
 
 
 
 
 
 
 
 
 

Numerical Solution Exact Solution Radius 
t= 0.5 s t= 1s t= 0.5 s t= 1s 

0.99 35.9947 36.3365 35.9967 36.3371 
0.98 33.9618 34.9904 33.9674 34.9924 

0.95 29.8967 32.2527 29.9087 32.2572 
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Fig.1: Temperature profile as time increases at 
interior nodes for  FO . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: Temperature profile as time increases at 
interior nodes for CV . 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 3: Temperature profile as time increases at 
interior noded for DPL. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4:  Comparison of temperature profile at 
different relaxation times ratio at R=0.95. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5: Comparison of temperature profile at 
different relaxation times ratio after 1 sec. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6:  Comparison of temperature profile as time 
increases at R=0.95. 
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Fig. 7: Comparison of temperature profile at 
different radius after 1 sec. 

 
 

4   Conclusion 
Based on the generalized concept of dual-phase-lag 
(DPL) in both the heat flux vector (τq) and the 
temperature gradient (τT) for heat conduction in a 
symmetrical sphere has been solved numerically 
with FDM scheme and simulation results are 
discussed. The simulation shows the effect of FO, 
CV and DPL. It is shown that CV predicts higher 
temperature and DPL lower at specified node by 
comparing with FO model, but all model due to time 
increase, are approaching the same value and similar 
trend in the temperature profile. The two phase lags 
play important roles for nano to macro structures. 
This needs to be determined experimentally and then 
a well tabulated properties needs for engineering 
materials under various conditions.  
 
 
References: 
 [1]  C.Cattaneo, A form of heat conduction equation 
which eliminates the paradox of instantaneous 
propagation, Compte Rendus,Vol.247, 1958,pp.431-
433. 
[2]  P.Vernotte, Les paradoxes de la theorie continue 
de lequation de la chleur, Compte Rendus,Vol.252, 
1958,pp.3154-3155. 
[3] D.Y.  Tzou, Macro- to Microscale Heat Transfer, 
the Lagging Behavior.Taylor & Francis, 
Washington,1997 
[4] W.Kaminski, Hyperbolic heat conduction 
equation for material with a non homogeneous inner 
structure",  ASME, Journal of Heat Transfer, 
Vol.112, 1990,pp.555-560. 

[5] K.E.Flik, M.I. & Choi, B.I. & Goodson, Heat 
transfer regimes in microstructures.Transaction of 
ASME, Journal of heat transfer, 
Vol.114,1992,pp666-674. 
[6] A.Majumdar, Microscale heat conduction in 
dielectric thin films. ASME, Journal of heat transfer, 
Vol.115,1993, pp.7-16. 
[7] B.Ozisik, M.N. & Vick,Propagation and 
reflection of thermal waves in a finite medium. Int. 
J. Heat Mass Transfer,Vol.27, 1984,pp.1845-1854. 
[8] D.Y.Tzou, Thermal shock waves induced by 
moving crack: a heat flux formulation. Int. J. Heat 
Mass Transfer,Vol.33, 1995, pp.877-885. 
  [9] D.Y.Ozisik, M.N. & D.Y. Tzou, On the wave 
theory in heat conduction, ASME, Journal Heat 
Transfer, Vol.116,1994,pp.526-535. 
[10] H.Pourmohamadian, H. & Basirat Tabrizi,  
Non-Fourier heat conduction in a spherical system 
with a time dependent heat source. Proceeding of 1st. 
Cappodocia. Eng. Symp., CMES-04,2004,pp.367-
370. 
[11] D.Y.Tzou, A unified field approach for heat 
conduction from macro to micro scale.  ASME, J. of 
Heat Transfer, Vol.117,1995,pp. 8-16. 
[12]  V.S. Al-Nimr, M.A. & Naji, M. & V.S. Arbaci, 
Nonequilibrium entropy   production under the 
effect of the dual-phase-lag heat conduction model. 
ASME, J. of Heat Transfer, Vol.122, 2000,pp.217-
223. 
[13]  P.J.Antaki, New interpretation of non-Fourier 
heat conduction in processed meat.  ASME, J. of 
Heat Transfer,Vol.127,2005, pp.189-193. 
[14] J.C.Carslaw, H.C. & J.C. Jaeger, Conduction of 
heat in solids, 2nd edition,   Clarendon press, Oxford, 
1959 
 

r,m

Te
m

pe
ra

tu
re

,C

0 .0030.0040.005
10

15

20

25

30

35

40

FO
CV
DPL

Proceedings of the 4th WSEAS International Conference on Heat and Mass Transfer, Gold Coast, Queensland, Australia, January 17-19, 2007         120


