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Abstract:- In developing time-critical systems such as real-time systems and embedded systems, it is important to 
check timing conflicts between timing requirements as earlier as possible. For checking timing conflicts, at least, a 
formal notation should be introduced for a concrete and unambiguous requirements specification. However, in an 
earlier development phase it is not easy to describe timing requirements by using formal methods. In this paper, we 
propose a systematic procedure for transforming and synthesizing timing scenarios of embedded systems into a 
Petri net-based model. Although our approach is based on the Petri net formalism, users only focus on describing 
timing requirements in the scenario concepts, since the detailed transformation and integration procedures based 
on Petri nets are hidden to users.  
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1   Introduction 
When developing real-time or embedded systems such 
as process control systems, patient monitoring systems, 
flight control systems and weapon systems, whose 
timely response is critical, it is very important to 
analyze the timing behaviors in as earlier a 
development phase as possible. Otherwise, rectifying 
requirement errors may need much more efforts and 
costs. In order to allow checking of requirement 
conflicts, requirements need to be unambiguously 
described using formal methods. 

There have been many researches on representing 
and analyzing timing behaviors using formal methods 
in the literature. However, since formal approaches 
mainly focus on verification of the specification, the 
requirements elicitation process was not addressed 
and the specification process was not user-friendly. 
Therefore, non-experts find it difficult to formally 
describe requirements, since modeling works require 
one’s knowledge and experiences of using formal 
methods.  

The use case approach is arguably one of the best 
known and most widely employed in the industry. The 
use case approach has a few practical advantages in 
describing external behaviors; it is scalable, traceable, 
and relatively insensitive to requirement changes [1]. 
Although a few many researches such as message 
sequence chart and labeled transition system [1,2], 

Statecharts [3], Finite State Automata [4], and Timed 
automata [5] have been reported for formalizing use 
cases, few works on timing scenarios can be found. 
Sóme [5] suggested a systematic approach to 
modeling and integrating timing scenarios with timed 
automata. However, their specifications may not 
properly preserve scalability and traceability of use 
cases. 

In this paper, we extend Time ER nets formalism 
[6] to Modular TER nets (MTER), for easily 
describing timing scenarios and for systematically 
analyzing timing conflicts in requirements while 
preserving the main advantages of use cases. A MTER 
model is composed of a set of Timing Constraint Nets 
(T-CN), each of which describes individual timing 
scenario. Dependencies among timing scenarios are 
described by sharing labels of places and transitions of 
T-CNs. This modular structure makes MTER models 
scalable and traceable by reflecting properties of 
timing scenarios. For easily describing timing 
scenarios and formalizing them by MTER, we propose 
a systematic procedure to filling event-condition 
tables and to transforming event-condition tables to 
T-CN models.  

The rest of the paper is organized as follows. In 
Section 2, we discuss on the characteristics of timing 
scenarios in the real-time systems. In Section 3, we 
extend Time ER nets to Modular TER nets, which is 
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suitable for independently describing timing 
constraints of timing scenarios. Section 4 describes the 
systematic procedure for formalizing and integrating 
timing scenarios into a MTER model. Section 5 
provides an analysis procedure for checking timing 
conflicts in MTER models. Finally, in Section 6, we 
conclude the paper. 

 
 

2   Characteristics of Timing Scenarios 
The scenario concept is suitable for describing the 
external behaviors of real-time systems such as 
reactive systems. Generally, a scenario which is 
composed of a sequence of operations describes a 
partial behavior of the interactions between a system 
and its environment. For specifying the timing 
behaviors of real-time systems, the scenario should 
have mechanisms for handling the timing constraints. 
For example, Fig. 1 presents a user- described 
requirement in natural language for the gate 
movement of the Generalized Railroad Crossing 
(GRC) system [7].  
 
 
 
 
 
 
 
 
 

Fig.1. A gate requirement of the GRC system 
 
From the scenario perspective, the requirement 
description shown in Fig. 1 is a sequence of events in 
a restricted situation such as resources and previous 
events, and so on with satisfying the timing 
constraints, for example, that “The gate must be 
‘down’ state between 6 and 7 seconds after starting to 
move down”. We can represent the requirements in 
Fig. 1 in the form of scenarios shown in Table 1.  

 
Table 1. A scenario of gate movement 

Event Pre-condition Timing constraints 
move_down <train, 

Approach> 
@move_down ≤ @<train, 

Approach>+1 
down  @move_down+6 ≤ @down < 

@move_down + 7 
move_up <train, Leave>  

up  @up ≤ @move_up + 6, @up ≤ 
@<train, Leave>+7 

 

Conditions for a system or environments can be 
represented by a pair of a state variable and its value. 
Denoting the state of a train as a state variable ‘train’, 
we can rewrite the pre-condition of the ‘move down’ 
event as ‘<train, Approach>’. Conditions or events 
may include time-stamps as in @down and @<train, 
Approach> in timing constraints of Table 1, where 
‘@’ denotes the time of event occurrence. The 
occurrence time of an event is specified with respect to 
the time of either a previously occurred event or a 
previously satisfied condition, which we call ‘event 
referencing’ and ‘condition referencing’, respectively. 

For example, in Scenario 1 of Fig. 2, both of the 
time constraints TC1 and TC2 reference the same 
events (Multiple referencing). In Scenario 2, the 
timing constraint TC3 uses event referencing, but TC4 
uses condition referencing. One event can by 
constrained by several events or conditions as shown 
in Scenario 2 (Multiple constraining).  

eventevent--occurrence time occurrence time 

conditioncondition--satisfaction time satisfaction time 

Time Axis
(Scenario 1)

Time Axis
(Scenario 2)

Time Axis
(Scenario 3)

TC1 TC2

TC3 

TC4 

e1

e2 e3

e4 e5

c1

Fig.2. Usage patterns of timing constraints 

The gate moves ‘up’ and ‘down’ states repeatedly. When a 
train approaches to the railroad crossing, the gate must start to 
move down within 1 second. The gate must be ‘down’ state 
between 6 and 7 seconds after starting to move down. When 
the train leaves the railroad crossing, the gate starts to move to 
‘up’ state. After starting to move up, the gate must reach ‘up’ 
state within 7 seconds but at least 6 seconds are needed to 
move the gate up.  

Timing constraints are closely related to each other 
since event referencing or condition referencing can 
occur in several timing scenarios. Since the time 
behaviors of real-time systems are also closely related 
with functional behaviors, timing constraints cannot 
be handled independently. In order to analyze the time 
behaviors of real-time systems, a formal model which 
can be obtained by synthesizing timing scenarios is 
required. The formal method should also take into 
account the characteristics of timing constraints as 
well as the characteristics of scenarios such as 
partiality, traceability, and scalability. 
 
 
3   Modeling the Scenarios by MTER 
In requirements analysis phase, timing constraints are 
generally given in the form of absolute time manner, 
which means that every scenario use only one time 
axis to describe the timely behaviors of a system. On 
the other hand, when modeling the timely behaviors of 
scenarios in a local viewpoint, we can use a relative 
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time axis, in which a scenario has an independent time 
axis against other scenarios. As a result, there exist 
several relative time axes in the scenario model. 
Therefore we need the modeling tool that can support 
the both timing viewpoints to analyze the timely 
behavior of the whole system. 

The UML [11] state diagram is the best known 
notation to describe the behaviors of each system 
component, but there exist some difficulties in 
representing the relationships among the scenario 
models. And the time concepts, which it can support, 
are only the relative time with respect to some state in 
a state diagram. So, it is difficult to model the time 
constraints related with events in several components. 
And state diagrams have a weakness in handling 
concurrency. 

To overcome these problems, we chose Petri Nets 
as a base formalism since some Petri nets such as Time 
ER nets [6] and TCPN [8] can handle both timing 
viewpoint and have several analysis techniques for 
timely behaviors. And Petri nets have many 
advantages of representing the concurrency among 
models naturally and representing multiple 
referencing of conditions and events. However, some 
Petri nets such as Time Petri nets [9], and timed Petri 
nets [10] do not support absolute timing viewpoint 
since they associate time with only transitions. 
Among them we select Time ER nets since they are 
general enough to support the two broad families of 
time extended Petri nets as well as they have formal 
semantics which the existing time Petri nets usually 
lack. Time ER nets are descriptive enough to express 
the various timing constraints that appeared in 
scenarios and behavior models. To improve 
understandability and modeling simplicity we 
introduce some graphical notation, where a time pair is 
associated with input arcs of a transition. In this case, 
the arc can control the time slot through which the 
token in input place could pass. 

In Time ER nets, each token (called 
environments) contains a variable, called chronos, 
whose value is of numerical type, representing the 
timestamp of the token and action associated with 
transition controls the timely behavior of token. To 
independently represent the behaviors of scenarios in a 
system, the methodology should support the modular 
concept. Since existing time extended Petri nets do not 
support the modular concept, it is impossible to 
represent the behaviors of a target system in the 
modular manner. Therefore, the Time ER net is 
extended with the modular concept as follows. 
 

Definition 1 For a character set Σ, a Timing Constraint 
net(T-CN) is a 6-tuple TC net = (P, T, E, A, L, M0), 
where 

 P, T, E, A and M0 are the same as those of a 
Time ER net, each of which stand for the sets 
of places, transitions, environments, actions 
and an initial marking respectively, 

 L : T → ∑+ is a label function that associates 
a distinct label taken from strings (∑+) with 
each transition of T.  

 
Definition 2 Modular Time ER nets (MTER nets) are 
defined as MTER nets = { T-CNi | i = 1…n} satisfying 
the following conditions: 

 Ti should be disjoint for T-CNi, 
 M0 for shared places should be the same. 

 
In MTER nets, shaded transitions mean shared 
transitions. Fig. 3 shows an example of MTER nets, 
which describes three timing scenarios of the railroad 
crossing example. Fig. 3(a) represents the gate 
movement shown in Fig. 1 and an additional timing 
constraint for ‘move up’. Fig. 3(b) illustrates the 
timing scenario for the train movement. And Fig. 3 (c) 
represents the safety constraint for the gate movement; 
the gate should be in the down state while a train is 
passing. In Fig. 3, shared transitions such as down and 
move_ up represent the events common to T-CN1 and 
T-CN3 and shared places such as EnterR and Leave 
represent the conditions common to T-CN1 and 
T-CN2. Shared transitions and places are shaded to 
differentiate them from local places and transitions. 

A local transition enabled in T-CNi is also 
enabled in MTER since it does not appear in other 
timing constraint nets. On the other hand, a shared 
transition can be enabled in MTER only when it is 
simultaneously enabled in all the T-CNi in which it 
appears. A globally enabled transition can fire in a 
common firable interval of all appearances in T-CNi.  

enterI move_down 

down move_up  

up  

P1 

P2 

P3 

P4 
[6,7) 

[6,7) 

[0,1] 

[1,2) 

(a) T-CN1 for gate movement (b) T-CN2 for train movement

[9,11) 

enterR

P5 

leaveP7 

[8,9) 

P6 

Leave 

EnterR

[2, ∞) 

enterI 
leave 

move_up  

down 

P8 

P9 

P10

P11

(c) T-CN3 for safety

EnterR

Leave

Fig.3. An example of MTER nets 
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The markings of MTER are composed of a set of pairs 
(Place, TimeStamp). In Fig. 3, the initial marking of 
MTER is M0 = { (P1, 0), (P7, 0), (Leave, 0), (P8, 0) }, 
assuming all the initial tokens are generated at time 0. 
In M0, if a local transition enterR is fired at time 0, the 
marking of MTER is changed into M1 = { (P1, 0), (P5, 
0), (EnterR, 0), (P8, 0) }. Then M2, M3, and M4 are 
obtained by firing move_down, down, and enterI at 
time 1, 7, and 10, respectively (see follows). Fig. 4 
shows how to get the Firable Interval(FI) of enterI. 

Input places of ‘enterI’

time

P5 in T-CN2

EnterR in 
T-CN2

9

firable interval 
of ‘enterI’

P9 in T-CN3

11

7

0

 
Fig.4. A firable interval of enterI transition. 

 
M0  =[enterR,0]=> M1,  FI(enterR) = [0,∞) 
M1  =[move_down,1]=> M2 ={ (P2, 1), (P5, 0), (EnterR, 
0), (P8, 0) }, FI(move_down) = [0, 1] 
M2  =[down, 7]=> M3 = { (P3, 7), (P5, 0), (EnterR, 0), 
(P9, 7) }, FI(down) = [7,8) 
M3 =[enterI, 10]=> M4 = { (P3, 7), (P6, 10), (P10, 10) }, 
FI(enterI) = [9,11) 
 
 
4   Synthesis of Timing Scenarios 
A system is usually composed of a large number of 
timing scenarios. These timing scenarios are often 
described and managed by using UML [11] use case 
diagrams. In this section, we present a systematic 
procedure for converting such timing scenarios into a 
MTER model, which consists of three major steps. 
Firstly, through interactions between users and 
domain experts, each timing scenario is clarified by 
filling out an Event-Condition (EC) table. Secondly, 
the event-condition tables are systematically 
transformed into a T-CNs without users’ interventions. 
In the final step, T-CNs are combined into MTER 
models.  

The GRC system has five functionalities: timing 
scenarios for gate movement, train movement, safety 
constraint, gate utility1 and gate utility2. The safety 
constraint describes the behavior of train passing when 
the gate is down. Gate utility1 describes a timing 
constraint that the gate should move down as late as 
possible for increasing gate availability. Gate utility2 
describes a timing constraint that the gate should move 
up as soon as possible for increasing gate availability. 

4.1 Filling out event-condition tables 
Action names initially given in the scenario 

description may need to be clarified by associating 
them with events. Generally, it is inappropriate to 
describe timing constraints by referencing only the 
occurrence times of actions, because they may have 
performance duration. In addition, users may use 
different terms for the same action and the same name 
to refer to distinct actions. Therefore, it is necessary to 
clarify actions by transforming action names to event 
names. 

Table 2. The EC table of gate movement 

Table 3. A table for state variables 

Table 4. The EC table of train movement 

Table 5. The EC table of safety constraint 

 
Table 2 shows an event-condition table designed to 
help modelers clearly represent timing scenarios. The 
table is composed of event names, pre-conditions, 
post-conditions, and timing constraints. Before filling 
out the table, relevant state variables and their domain 
values should be identified since each pre- and 
post-conditions of the table is expressed by a pair of a 
state variable and its value. In the gate movement 
example (see Table 2), we identified a state variable 
‘train’ whose values are ‘Approach’, ‘EnterR’, 
‘EnterI’, and ‘Leave’ (see Table 3). 

As a result of event occurrence, some conditions 
may be satisfied (called generated conditions) and/or 
dissatisfied (called dissatisfied conditions). When 

Events Pre Post  Timing Constraints 
move_do

wn 
<train, 

EnterR>
 @move_down ≤ 

@<train,EnterR> +1 
down   @move_down+6 ≤ @down < 

@move_down+7 
move_up <train, 

Leave> 
 @<train, Leave>+1 ≤ @move 

_up < @<train, Leave>+2 
up   @move_up+6 ≤ @up < 

@move_up+7 

State Variable Descriptions Domain Values 

train The status of a 
train 

Approach, EnterR, 
EnterI, Leave 

... ... ... 

Events Pre Post Timing Constraints 

enterR  <train, EnterR> 
out<train, Leave>  

enterI  out<train, EnterR> @enterR+9 ≤ @enterI < 
@enterR+11 

leave  <train, Leave> @enterI+8 ≤ @leave < 
@enterI+9 

Events Pre Post Timing Constraints 
down    
enterI   @down+2 ≤ @enterI 
leave    

move_up    
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writing down the post-conditions column, we 
differentiate the dis-satisfied conditions from the 
generated conditions by inserting prefix ‘out’ (see 
Table 4). A timing constraint is described in terms of 
inequalities including event occurrence time (denoted 
as @event) and condition satisfaction time (denoted as 
@condition). Tables 4 and 5 show the completed 
event-condition tables for train movement and safety 
constraint, respectively. 
 
4.2 Convert event-condition tables to T-CNs 
Event-condition tables can be systematically 
converted into timing constraint nets. Since each 
timing scenario is considered to be a concurrent unit of 
system’s functionalities, the corresponding event 
condition table is translated into a single T-CN model, 
in which a sequence of events is transformed into a 
loop of transitions with intermediate places (called 
control places) and other components such as 
pre-/post-conditions and timing constraints are 
transformed into places (called condition places or 
time places, respectively) and connecting arcs. 
In the case of a pre-condition, the condition place is 
connected to the referencing transition by 
bi-directional arcs, which indicates that the event 
references only the condition without changing its 
status (see the arc between EnterR and move_down in 
Fig. 3(a)). In the case of a generated post-condition, it 
has an incoming arc from the transition (see the arc 
from enterR to EnterR in Fig. 3(b)). And in the case 
of a dissatisfied post-condition, it has an outgoing arc 
to the transition (see the arc from EnterR to enterI in 
Fig. 3(b)).  
     In the case of event time referencing in a timing 
constraint such as @enterR+9 ≤ @enterI < @enterR 
+11 as shown in Table 4, the referenced event time 
(@enterR) is transformed into a time place, with an 
incoming arc from enterR transition and an outgoing 
arc into enterI transition. A pair of min and max values 
such as [9,11) is associated with the outgoing arc. If 
the referenced event is an immediately preceding 
event, the time place can be replaced by the control 
place (see P5, enterR, and enterI in Fig. 3(b)). In the 
case of condition time referencing in a timing 
constraint such as @move_down ≤ @<train, EnterR> 
+1 as shown in Table 2, a bi-directional arc between 
the move_down transition and the condition place 
(EnterR) is added. And a pair of min and max values 
such as [0,1] is placed on the arc (see the arc between 
EnterR and move_down in Fig. 3(a)). 
 

4.3 Combining T-CNs into MTER 
The procedure for integrating timing scenarios begins 
with locating shared transitions and shared places. The 
events appearing in multiple timing scenarios are 
declared to be shared transitions. Pre and post- 
conditions as well as the time places appearing in 
several T-CNs are marked as shared places. The 
relationships between scenarios such as UML 
‘include’ and ‘extend’ are described by shared places 
and transitions. The ‘include’ relationship can be 
described by using shared S and E condition places. 
The ‘extend’ relationship, which means a branch 
structure, can be described by a shared transition. 

enterI leave 

move_up  down 

P8 

P9 

P10

P11

P12 

P13 

leave up

[0,7] 

P14 

P15 

move_down enterI

[0,7] 

(a) T-CN3 for safety (b) T-CN4 for gate utility1 (c) T-CN5 for gate utility2

[2, ∞) 

Fig.5. A MTER model of the GRC example 
 
Shared conditions such as <train, EnterR> and <train, 
Leave> are represented by shared places EnterR and 
Leave, respectively as shown in Fig. 3. Fig. 5 shows 
the MTER model of the railroad crossing example 
which is composed of three remaining timing 
constraint nets such as safety, gate utility 1, and gate 
utility 2.  
 
5   Analysis of Conflicting TCs 
A MTER model is composed of a set of timing 
constraint nets, T-CNs. In order to detect timing 
anomalies among timing constraints, each T-CNi is 
locally analyzed and reduced in order to minimize the 
size of models. Then T-CN models are incrementally 
and iteratively composed, verified, and reduced for 
checking non-firable transitions. Fig. 6 summarizes a 
procedure for checking timing anomaly in MTER 
models.  

In MTER net models, composition is performed 
by unifying shared transitions while preserving 
incoming/outgoing arc information of each places and 
timing constraints, as shown in Fig. 7(a). When there 
are several pairs of corresponding shared transitions, 
they are unified independently as shown in Fig. 7(b). 
A unified transition is transformed to a local transition. 
In parallel composition of MTER nets, the number of 
places is preserved. 
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apply 
reduction rules

compose
two T-CNi

reduce each
of T-CNi

∃ two T-CNi
stop 

checking 

check
non-firable
transitions 

report
anomaly 

conflicts

no 
conflicts

remove two T-CNi

add the
composed 

T-CNi

No

Yes

Fig.6. A procedure for checking timing anomaly 
 

shared

A

B

shared

C

D

A C

B D

shared

[2, 3] [5, 7] [2, 3] [5, 7]

shared

A

B

shared

C

D shared

A C

B

D

shared

shared

(a) composing a single instance

(b) composing multiple instances

 Fig.7. Composing rules of shared transitions 
 
6   Conclusion 
In earlier development phases of real-time systems, 
for easily obtaining a formal model and checking 
timing inconsistency among timing requirements, we 
proposed a systematic procedure of transforming and 
integrating timing scenarios into a Petri net-based 
model and provided a static timing analysis technique. 
By using our approach, users can easily obtain an 
initial requirement model of a system from timing 
scenarios and check the timing conflicts between 
timing constraints before proceeding to design and 
implementation phases.  

As future works, software tools to support timing 
scenarios-based modeling and analysis on MTER 
models are needed because the productivity gains one 
can expect when applying our approach manually are 
limited. 
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