
Synthesis of Timing Scenarios for Embedded Systems using
Modular Petri nets

Woo Jin Lee*, Young Joon Park*, and Ho Kyoung Lee**

EECS School*, Network Infra Laboratory of Korea Telecom**
Kyungpook National University

1370 Sangyug-dong, Book-gu, Daegu,
KOREA

 http://selab.knu.ac.kr

Abstract:- In developing time-critical systems such as real-time systems and embedded systems, it is important to
check timing conflicts between timing requirements as earlier as possible. For checking timing conflicts, at least, a
formal notation should be introduced for a concrete and unambiguous requirements specification. However, in an
earlier development phase it is not easy to describe timing requirements by using formal methods. In this paper, we
propose a systematic procedure for transforming and synthesizing timing scenarios of embedded systems into a
Petri net-based model. Although our approach is based on the Petri net formalism, users only focus on describing
timing requirements in the scenario concepts, since the detailed transformation and integration procedures based
on Petri nets are hidden to users.

Key-Words: - Embedded system, real-time system. Requirement analysis, scenario composition, Petri nets

1 Introduction
When developing real-time or embedded systems such
as process control systems, patient monitoring systems,
flight control systems and weapon systems, whose
timely response is critical, it is very important to
analyze the timing behaviors in as earlier a
development phase as possible. Otherwise, rectifying
requirement errors may need much more efforts and
costs. In order to allow checking of requirement
conflicts, requirements need to be unambiguously
described using formal methods.

There have been many researches on representing
and analyzing timing behaviors using formal methods
in the literature. However, since formal approaches
mainly focus on verification of the specification, the
requirements elicitation process was not addressed
and the specification process was not user-friendly.
Therefore, non-experts find it difficult to formally
describe requirements, since modeling works require
one’s knowledge and experiences of using formal
methods.

The use case approach is arguably one of the best
known and most widely employed in the industry. The
use case approach has a few practical advantages in
describing external behaviors; it is scalable, traceable,
and relatively insensitive to requirement changes [1].
Although a few many researches such as message
sequence chart and labeled transition system [1,2],

Statecharts [3], Finite State Automata [4], and Timed
automata [5] have been reported for formalizing use
cases, few works on timing scenarios can be found.
Sóme [5] suggested a systematic approach to
modeling and integrating timing scenarios with timed
automata. However, their specifications may not
properly preserve scalability and traceability of use
cases.

In this paper, we extend Time ER nets formalism
[6] to Modular TER nets (MTER), for easily
describing timing scenarios and for systematically
analyzing timing conflicts in requirements while
preserving the main advantages of use cases. A MTER
model is composed of a set of Timing Constraint Nets
(T-CN), each of which describes individual timing
scenario. Dependencies among timing scenarios are
described by sharing labels of places and transitions of
T-CNs. This modular structure makes MTER models
scalable and traceable by reflecting properties of
timing scenarios. For easily describing timing
scenarios and formalizing them by MTER, we propose
a systematic procedure to filling event-condition
tables and to transforming event-condition tables to
T-CN models.

The rest of the paper is organized as follows. In
Section 2, we discuss on the characteristics of timing
scenarios in the real-time systems. In Section 3, we
extend Time ER nets to Modular TER nets, which is

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 158

mailto:woojin@knu.ac.kr

suitable for independently describing timing
constraints of timing scenarios. Section 4 describes the
systematic procedure for formalizing and integrating
timing scenarios into a MTER model. Section 5
provides an analysis procedure for checking timing
conflicts in MTER models. Finally, in Section 6, we
conclude the paper.

2 Characteristics of Timing Scenarios
The scenario concept is suitable for describing the
external behaviors of real-time systems such as
reactive systems. Generally, a scenario which is
composed of a sequence of operations describes a
partial behavior of the interactions between a system
and its environment. For specifying the timing
behaviors of real-time systems, the scenario should
have mechanisms for handling the timing constraints.
For example, Fig. 1 presents a user- described
requirement in natural language for the gate
movement of the Generalized Railroad Crossing
(GRC) system [7].

Fig.1. A gate requirement of the GRC system

From the scenario perspective, the requirement
description shown in Fig. 1 is a sequence of events in
a restricted situation such as resources and previous
events, and so on with satisfying the timing
constraints, for example, that “The gate must be
‘down’ state between 6 and 7 seconds after starting to
move down”. We can represent the requirements in
Fig. 1 in the form of scenarios shown in Table 1.

Table 1. A scenario of gate movement

Event Pre-condition Timing constraints
move_down <train,

Approach>
@move_down ≤ @<train,

Approach>+1
down @move_down+6 ≤ @down <

@move_down + 7
move_up <train, Leave>

up @up ≤ @move_up + 6, @up ≤
@<train, Leave>+7

Conditions for a system or environments can be
represented by a pair of a state variable and its value.
Denoting the state of a train as a state variable ‘train’,
we can rewrite the pre-condition of the ‘move down’
event as ‘<train, Approach>’. Conditions or events
may include time-stamps as in @down and @<train,
Approach> in timing constraints of Table 1, where
‘@’ denotes the time of event occurrence. The
occurrence time of an event is specified with respect to
the time of either a previously occurred event or a
previously satisfied condition, which we call ‘event
referencing’ and ‘condition referencing’, respectively.

For example, in Scenario 1 of Fig. 2, both of the
time constraints TC1 and TC2 reference the same
events (Multiple referencing). In Scenario 2, the
timing constraint TC3 uses event referencing, but TC4
uses condition referencing. One event can by
constrained by several events or conditions as shown
in Scenario 2 (Multiple constraining).

eventevent--occurrence time occurrence time

conditioncondition--satisfaction time satisfaction time

Time Axis
(Scenario 1)

Time Axis
(Scenario 2)

Time Axis
(Scenario 3)

TC1 TC2

TC3

TC4

e1

e2 e3

e4 e5

c1

Fig.2. Usage patterns of timing constraints

The gate moves ‘up’ and ‘down’ states repeatedly. When a
train approaches to the railroad crossing, the gate must start to
move down within 1 second. The gate must be ‘down’ state
between 6 and 7 seconds after starting to move down. When
the train leaves the railroad crossing, the gate starts to move to
‘up’ state. After starting to move up, the gate must reach ‘up’
state within 7 seconds but at least 6 seconds are needed to
move the gate up.

Timing constraints are closely related to each other
since event referencing or condition referencing can
occur in several timing scenarios. Since the time
behaviors of real-time systems are also closely related
with functional behaviors, timing constraints cannot
be handled independently. In order to analyze the time
behaviors of real-time systems, a formal model which
can be obtained by synthesizing timing scenarios is
required. The formal method should also take into
account the characteristics of timing constraints as
well as the characteristics of scenarios such as
partiality, traceability, and scalability.

3 Modeling the Scenarios by MTER
In requirements analysis phase, timing constraints are
generally given in the form of absolute time manner,
which means that every scenario use only one time
axis to describe the timely behaviors of a system. On
the other hand, when modeling the timely behaviors of
scenarios in a local viewpoint, we can use a relative

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 159

time axis, in which a scenario has an independent time
axis against other scenarios. As a result, there exist
several relative time axes in the scenario model.
Therefore we need the modeling tool that can support
the both timing viewpoints to analyze the timely
behavior of the whole system.

The UML [11] state diagram is the best known
notation to describe the behaviors of each system
component, but there exist some difficulties in
representing the relationships among the scenario
models. And the time concepts, which it can support,
are only the relative time with respect to some state in
a state diagram. So, it is difficult to model the time
constraints related with events in several components.
And state diagrams have a weakness in handling
concurrency.

To overcome these problems, we chose Petri Nets
as a base formalism since some Petri nets such as Time
ER nets [6] and TCPN [8] can handle both timing
viewpoint and have several analysis techniques for
timely behaviors. And Petri nets have many
advantages of representing the concurrency among
models naturally and representing multiple
referencing of conditions and events. However, some
Petri nets such as Time Petri nets [9], and timed Petri
nets [10] do not support absolute timing viewpoint
since they associate time with only transitions.
Among them we select Time ER nets since they are
general enough to support the two broad families of
time extended Petri nets as well as they have formal
semantics which the existing time Petri nets usually
lack. Time ER nets are descriptive enough to express
the various timing constraints that appeared in
scenarios and behavior models. To improve
understandability and modeling simplicity we
introduce some graphical notation, where a time pair is
associated with input arcs of a transition. In this case,
the arc can control the time slot through which the
token in input place could pass.

In Time ER nets, each token (called
environments) contains a variable, called chronos,
whose value is of numerical type, representing the
timestamp of the token and action associated with
transition controls the timely behavior of token. To
independently represent the behaviors of scenarios in a
system, the methodology should support the modular
concept. Since existing time extended Petri nets do not
support the modular concept, it is impossible to
represent the behaviors of a target system in the
modular manner. Therefore, the Time ER net is
extended with the modular concept as follows.

Definition 1 For a character set Σ, a Timing Constraint
net(T-CN) is a 6-tuple TC net = (P, T, E, A, L, M0),
where

 P, T, E, A and M0 are the same as those of a
Time ER net, each of which stand for the sets
of places, transitions, environments, actions
and an initial marking respectively,

 L : T → ∑+ is a label function that associates
a distinct label taken from strings (∑+) with
each transition of T.

Definition 2 Modular Time ER nets (MTER nets) are
defined as MTER nets = { T-CNi | i = 1…n} satisfying
the following conditions:

 Ti should be disjoint for T-CNi,
 M0 for shared places should be the same.

In MTER nets, shaded transitions mean shared
transitions. Fig. 3 shows an example of MTER nets,
which describes three timing scenarios of the railroad
crossing example. Fig. 3(a) represents the gate
movement shown in Fig. 1 and an additional timing
constraint for ‘move up’. Fig. 3(b) illustrates the
timing scenario for the train movement. And Fig. 3 (c)
represents the safety constraint for the gate movement;
the gate should be in the down state while a train is
passing. In Fig. 3, shared transitions such as down and
move_ up represent the events common to T-CN1 and
T-CN3 and shared places such as EnterR and Leave
represent the conditions common to T-CN1 and
T-CN2. Shared transitions and places are shaded to
differentiate them from local places and transitions.

A local transition enabled in T-CNi is also
enabled in MTER since it does not appear in other
timing constraint nets. On the other hand, a shared
transition can be enabled in MTER only when it is
simultaneously enabled in all the T-CNi in which it
appears. A globally enabled transition can fire in a
common firable interval of all appearances in T-CNi.

enterI move_down

down move_up

up

P1

P2

P3

P4
[6,7)

[6,7)

[0,1]

[1,2)

(a) T-CN1 for gate movement (b) T-CN2 for train movement

[9,11)

enterR

P5

leaveP7

[8,9)

P6

Leave

EnterR

[2, ∞)

enterI
leave

move_up

down

P8

P9

P10

P11

(c) T-CN3 for safety

EnterR

Leave

Fig.3. An example of MTER nets

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 160

The markings of MTER are composed of a set of pairs
(Place, TimeStamp). In Fig. 3, the initial marking of
MTER is M0 = { (P1, 0), (P7, 0), (Leave, 0), (P8, 0) },
assuming all the initial tokens are generated at time 0.
In M0, if a local transition enterR is fired at time 0, the
marking of MTER is changed into M1 = { (P1, 0), (P5,
0), (EnterR, 0), (P8, 0) }. Then M2, M3, and M4 are
obtained by firing move_down, down, and enterI at
time 1, 7, and 10, respectively (see follows). Fig. 4
shows how to get the Firable Interval(FI) of enterI.

Input places of ‘enterI’

time

P5 in T-CN2

EnterR in
T-CN2

9

firable interval
of ‘enterI’

P9 in T-CN3

11

7

0

Fig.4. A firable interval of enterI transition.

M0 =[enterR,0]=> M1, FI(enterR) = [0,∞)
M1 =[move_down,1]=> M2 ={ (P2, 1), (P5, 0), (EnterR,
0), (P8, 0) }, FI(move_down) = [0, 1]
M2 =[down, 7]=> M3 = { (P3, 7), (P5, 0), (EnterR, 0),
(P9, 7) }, FI(down) = [7,8)
M3 =[enterI, 10]=> M4 = { (P3, 7), (P6, 10), (P10, 10) },
FI(enterI) = [9,11)

4 Synthesis of Timing Scenarios
A system is usually composed of a large number of
timing scenarios. These timing scenarios are often
described and managed by using UML [11] use case
diagrams. In this section, we present a systematic
procedure for converting such timing scenarios into a
MTER model, which consists of three major steps.
Firstly, through interactions between users and
domain experts, each timing scenario is clarified by
filling out an Event-Condition (EC) table. Secondly,
the event-condition tables are systematically
transformed into a T-CNs without users’ interventions.
In the final step, T-CNs are combined into MTER
models.

The GRC system has five functionalities: timing
scenarios for gate movement, train movement, safety
constraint, gate utility1 and gate utility2. The safety
constraint describes the behavior of train passing when
the gate is down. Gate utility1 describes a timing
constraint that the gate should move down as late as
possible for increasing gate availability. Gate utility2
describes a timing constraint that the gate should move
up as soon as possible for increasing gate availability.

4.1 Filling out event-condition tables
Action names initially given in the scenario

description may need to be clarified by associating
them with events. Generally, it is inappropriate to
describe timing constraints by referencing only the
occurrence times of actions, because they may have
performance duration. In addition, users may use
different terms for the same action and the same name
to refer to distinct actions. Therefore, it is necessary to
clarify actions by transforming action names to event
names.

Table 2. The EC table of gate movement

Table 3. A table for state variables

Table 4. The EC table of train movement

Table 5. The EC table of safety constraint

Table 2 shows an event-condition table designed to
help modelers clearly represent timing scenarios. The
table is composed of event names, pre-conditions,
post-conditions, and timing constraints. Before filling
out the table, relevant state variables and their domain
values should be identified since each pre- and
post-conditions of the table is expressed by a pair of a
state variable and its value. In the gate movement
example (see Table 2), we identified a state variable
‘train’ whose values are ‘Approach’, ‘EnterR’,
‘EnterI’, and ‘Leave’ (see Table 3).

As a result of event occurrence, some conditions
may be satisfied (called generated conditions) and/or
dissatisfied (called dissatisfied conditions). When

Events Pre Post Timing Constraints
move_do

wn
<train,

EnterR>
 @move_down ≤

@<train,EnterR> +1
down @move_down+6 ≤ @down <

@move_down+7
move_up <train,

Leave>
 @<train, Leave>+1 ≤ @move

_up < @<train, Leave>+2
up @move_up+6 ≤ @up <

@move_up+7

State Variable Descriptions Domain Values

train The status of a
train

Approach, EnterR,
EnterI, Leave

...

Events Pre Post Timing Constraints

enterR <train, EnterR>
out<train, Leave>

enterI out<train, EnterR> @enterR+9 ≤ @enterI <
@enterR+11

leave <train, Leave> @enterI+8 ≤ @leave <
@enterI+9

Events Pre Post Timing Constraints
down
enterI @down+2 ≤ @enterI
leave

move_up

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 161

writing down the post-conditions column, we
differentiate the dis-satisfied conditions from the
generated conditions by inserting prefix ‘out’ (see
Table 4). A timing constraint is described in terms of
inequalities including event occurrence time (denoted
as @event) and condition satisfaction time (denoted as
@condition). Tables 4 and 5 show the completed
event-condition tables for train movement and safety
constraint, respectively.

4.2 Convert event-condition tables to T-CNs
Event-condition tables can be systematically
converted into timing constraint nets. Since each
timing scenario is considered to be a concurrent unit of
system’s functionalities, the corresponding event
condition table is translated into a single T-CN model,
in which a sequence of events is transformed into a
loop of transitions with intermediate places (called
control places) and other components such as
pre-/post-conditions and timing constraints are
transformed into places (called condition places or
time places, respectively) and connecting arcs.
In the case of a pre-condition, the condition place is
connected to the referencing transition by
bi-directional arcs, which indicates that the event
references only the condition without changing its
status (see the arc between EnterR and move_down in
Fig. 3(a)). In the case of a generated post-condition, it
has an incoming arc from the transition (see the arc
from enterR to EnterR in Fig. 3(b)). And in the case
of a dissatisfied post-condition, it has an outgoing arc
to the transition (see the arc from EnterR to enterI in
Fig. 3(b)).
 In the case of event time referencing in a timing
constraint such as @enterR+9 ≤ @enterI < @enterR
+11 as shown in Table 4, the referenced event time
(@enterR) is transformed into a time place, with an
incoming arc from enterR transition and an outgoing
arc into enterI transition. A pair of min and max values
such as [9,11) is associated with the outgoing arc. If
the referenced event is an immediately preceding
event, the time place can be replaced by the control
place (see P5, enterR, and enterI in Fig. 3(b)). In the
case of condition time referencing in a timing
constraint such as @move_down ≤ @<train, EnterR>
+1 as shown in Table 2, a bi-directional arc between
the move_down transition and the condition place
(EnterR) is added. And a pair of min and max values
such as [0,1] is placed on the arc (see the arc between
EnterR and move_down in Fig. 3(a)).

4.3 Combining T-CNs into MTER
The procedure for integrating timing scenarios begins
with locating shared transitions and shared places. The
events appearing in multiple timing scenarios are
declared to be shared transitions. Pre and post-
conditions as well as the time places appearing in
several T-CNs are marked as shared places. The
relationships between scenarios such as UML
‘include’ and ‘extend’ are described by shared places
and transitions. The ‘include’ relationship can be
described by using shared S and E condition places.
The ‘extend’ relationship, which means a branch
structure, can be described by a shared transition.

enterI leave

move_up down

P8

P9

P10

P11

P12

P13

leave up

[0,7]

P14

P15

move_down enterI

[0,7]

(a) T-CN3 for safety (b) T-CN4 for gate utility1 (c) T-CN5 for gate utility2

[2, ∞)

Fig.5. A MTER model of the GRC example

Shared conditions such as <train, EnterR> and <train,
Leave> are represented by shared places EnterR and
Leave, respectively as shown in Fig. 3. Fig. 5 shows
the MTER model of the railroad crossing example
which is composed of three remaining timing
constraint nets such as safety, gate utility 1, and gate
utility 2.

5 Analysis of Conflicting TCs
A MTER model is composed of a set of timing
constraint nets, T-CNs. In order to detect timing
anomalies among timing constraints, each T-CNi is
locally analyzed and reduced in order to minimize the
size of models. Then T-CN models are incrementally
and iteratively composed, verified, and reduced for
checking non-firable transitions. Fig. 6 summarizes a
procedure for checking timing anomaly in MTER
models.

In MTER net models, composition is performed
by unifying shared transitions while preserving
incoming/outgoing arc information of each places and
timing constraints, as shown in Fig. 7(a). When there
are several pairs of corresponding shared transitions,
they are unified independently as shown in Fig. 7(b).
A unified transition is transformed to a local transition.
In parallel composition of MTER nets, the number of
places is preserved.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 162

apply
reduction rules

compose
two T-CNi

reduce each
of T-CNi

∃ two T-CNi
stop

checking

check
non-firable
transitions

report
anomaly

conflicts

no
conflicts

remove two T-CNi

add the
composed

T-CNi

No

Yes

Fig.6. A procedure for checking timing anomaly

shared

A

B

shared

C

D

A C

B D

shared

[2, 3] [5, 7] [2, 3] [5, 7]

shared

A

B

shared

C

D shared

A C

B

D

shared

shared

(a) composing a single instance

(b) composing multiple instances

 Fig.7. Composing rules of shared transitions

6 Conclusion
In earlier development phases of real-time systems,
for easily obtaining a formal model and checking
timing inconsistency among timing requirements, we
proposed a systematic procedure of transforming and
integrating timing scenarios into a Petri net-based
model and provided a static timing analysis technique.
By using our approach, users can easily obtain an
initial requirement model of a system from timing
scenarios and check the timing conflicts between
timing constraints before proceeding to design and
implementation phases.

As future works, software tools to support timing
scenarios-based modeling and analysis on MTER
models are needed because the productivity gains one
can expect when applying our approach manually are
limited.

References:
 [1] C. Damas, B. Lambeau, P. Dupont, and A.

Lamsweerde, Generating Annotated Behavior
Models from End-User Scenarios, IEEE Trans. on
Soft. Eng., Vol. 31, No. 12, Dec. 2005.

[2] S. Uchitel, J. Kramer, and J. Magee, Synthesis of
Behavioral Models from Scenarios, IEEE Trans.
on Soft. Eng., Vol.29, No. 2, Feb. 2003.

[3] M. Glinz, An integrated formal model of scenarios
based on Statecharts, European Software
Engineering Conf. ’95, Sept. 1995, pp. 254-271

[4] F. Lustman, A formal approach to scenario
integration, Annals Software Engineering, Vol. 3,
1997, pp. 255-271

[5] S. Sóme, R. Dssouli, and J. Vaucher, Toward an
automation of requirement engineering using
scenario, Journal of Computing and Information,
Vol. 2, No. 1, 1996, pp. 1110-1132

[6] C. Ghezzi, D. Mandriodi, S. Morsca, M. Pezze, A
unified high-Level Petri net formalism for
time-critical systems, IEEE Trans. on Soft. Eng.,
Vol. 17, No. 2, 1991, pp. 160-172

[7] T. Bolognesi, Constraint-Oriented Specification
Style for Time-Dependent Behaviors, Formal
methods in real-time computing, John Wiley, 1995

[8] J. J. P. Tsai, S. J. Yang, and Y.H. Chang, Timing
Constraint Petri Nets and Their Application to
Schedulability Analysis of Real-Time System
Specifications, IEEE Trans. on Soft. Eng., Vol. 21,
No. 1, Jan. 1995

[9] P.M. Merlin, D.J. Farber, Recoverability of
communication protocols implications of a
theoretical study, IEEE Trans. on Commun., 1976,
pp. 1036-1043

[10] C. Ramchandani, Analysis of asynchronous
concurrent systems by Petri nets, MIT
TR-120(Project MAC), MIT, 1974

[11] OMG, Unified modeling language (UML) 2.0
Specification, URL:http://www.uml.org, 2004

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 163

	Post

