
A Reliable UDP for Ubiquitous Communication Environments

Doan Thanh Tran, Eunmi Choi∗
School of Business IT
Kookmin University

Jeongnueng-Dong, Seongbuk-Gu, Seoul, 136-702
Korea

Abstract: In the incoming ubiquitous communication environments, a large number of ubiquitous terminal
devices tend to communicate with a specific server or other devices that locate locally. This pervasive
terminal-initiated communication will become more popularized. In this paper, we propose a reliable
communication protocol, called RUDP, that is designed for ubiquitous communication environments where a
large number of terminal devices frequently send a short size of requests. The RUPD contains a reliable
connection-oriented protocol, which uses a three-way handshaking for connection establishment and a resend
mechanism for packet loss, taking advantages of TCP. To observe the performance and reliability, we compare
experimental results of RUPD with TCP on top of Java and .NET platforms. The RUDP that we propose in this
paper achieves fast and reliable communication compared to an ordinary TCP communication.

Key-Words: UDP, Reliable Communication Protocol, Ubiquitous System

∗ Corresponding author: Eunmi Choi. This work was supported by the BK21 in 2006. and partially supported by the
KOSEF under Grant No. R04-2003-000-10213-0.

1 Introduction
In ubiquitous computing environments [1,9,10] like a
digital home, a number of ubiquitous terminal devices
tend to communicate with a specific server or other
devices that locates locally. As a center of services, the
server receives requests from various terminal devices
and provides appropriate context-aware services for
the requests. To provide context-aware services, the
server usually maintains context and persistent
information on its local storage. Fast and reliable
communication between terminal devices and their
server is necessary to provide correct and real-time
services [8]. In this paper, we focus on constructing a
fast and reliable communication protocol in ubiquitous
computing environment.
 In addition, in the incoming ubiquitous
communication environments, a large number of
pervasive terminal devices initiate their
communication automatically without human
interference. Thus, terminal-initiated communications
will become more popularized than human-initiated
communications [11]. A large number of terminal
devices communicate by embedded short-range
wireless communication methods. The packet size of
data is relatively small and the terminal-initiated
communications become to involve many

simultaneous connections to the server. These kinds of
requirements in ubiquitous communication
environment let us need to have a communication
protocol with short and robust connection to a server.
 There are many research works on communication
protocols by studying the performance of TCP and
UDP communications on different networks and OS
plat-forms. Jingyi He [3] studied packet aggregation
and deflection routing as employed in Optical
Packet-switched networks on the performance of
upper layer Internet protocols represented by TCP and
UDP. George Xylomenos [4] carried out a
comprehensive set of measurements of a 2.4 GHz
DSSS wireless LAN and analyze its behavior. The
issues which were examined are host and interface
heterogeneity, bidirectional (TCP) traffic and error
Modeling. Andro Milanovic [5] studied data
transmission speed on three different operating
systems: Windows 95, Windows NT workstation, and
Linux 2.1.132. Sherali Zeadally [6] performed some
experiments for conventional networking protocols
such as TCP- UDP/IP over ATM. Only a few
researchers work for reliable UDP areas. E. He [7]
studied an aggressive bulk data transfer scheme, called
Reliable Blast UDP (RBUDP), intended for extremely
high bandwidth, dedicated or Quality-of-Service-

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 1

mailto:td_thanh@yahoo.com
mailto:emchoi@kookmin.ac.kr

enabled networks, such as optically switched
networks.
 In this paper, we propose a reliable and robust UDP
communication mechanism, called RUDP, which is
especially for ubiquitous communication environment
where a large number of end-terminal devices tend to
send request packets with short sizes, such as periodic
monitoring data and profile data. The terminal devices
initiate the communication to a server and have a
connection to the server as the TCP does. However,
the terminals do not need to keep their sessions for a
long time compared to the ordinary TCP. After
showing the protocol of RUDP, we present
experimental results of the RUDP on Java and .NET
platform environments, compared with the
performance results of an ordinary TCP. We also
apply various stress conditions in testing scenarios to
predict cases of the real-world applications.
 This paper is organized as follows. Section 2
describes the target ubiquitous communication
environment. Section 3 introduces the RUDP protocol
and its characteristics. In section 4, experimental
results of performance are presented in several
aspects. We conclude in the last section.

2 Target Ubiquitous Communication
Environment
As we introduced, ubiquitous communication
environment contains a large number of ubiquitous
terminal devices as shown in Figure 1. The numerous
terminal devices initiate communication to a server
automatically without human interference, and send
requests to the server, which accepts the requests and
processes the requests with the helps of the proper
remote service providers on Internet. We consider that
the devices tend to move around and the request size is
short, such as for sending location information or
monitoring a situation in the ubiquitous environment.
The terminal-initiated communications are
event-driven based communication, so the number of
maximum simultaneous connections to the server will
be the almost same as the number of terminal devices
[11]. As for a different type of stream service
re-quests, such as file upload or download and
multimedia services, it is necessary to change easily to
separate ordinary TCP or UDP communication
connections.
 In addition, the server needs to accept various
requests from different terminal devices, so the
communication requires a protocol that can be

commonly used. As for context-aware events
handling, the packets need to be delivered reliably and
the connection to a server needs to be kept in a
short-range. Also fast communication is the essential
requirement in pervasive ubiquitous terminals. Thus,
we need to construct a protocol with fast, reliable, and
robust communication. In the next section, we
introduce a reliable UDP that is suitable for ubiquitous
communication environments.

Fig. 1 Ubiquitous Communication Environment

3 Reliable UDP Protocol
In this section, we introduce the Reliable-UDP
(RUDP) protocol with its characteristics. We also
compare the major characteristics among UDP,
RUDP, and TCP.

3.1 The RUDP Protocol
The RUDP protocol we propose has the following
characteristics to ensure the reliable delivery between
two parties:
• In order to establish a connection, the RUDP uses

three-way handshaking with sessionID
agreement.

• The sessionID is used for the further sequences of
communication.

• For recovery from a packet loss, the sender
resends the same packet after a specific period
time if no ACK is received from the receiver.

 Figure 2 shows the overall protocol flow between a
client and a server. The server performs a passive
OPEN (s1) and is ready to receive a connection
request (CONN) from a client. The client starts
communication by sending a CONN message to the
server as well as the SID of a random number (c1), and
waits for ACK from the server (c2). Once the server
receives the CONN control message (s3), it sends an
agreement message of CONN with another random

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 2

number CHECK (s4). When the client receives the
CONN control message as the acknowledgement of
request (c3), the client now sends the data block with
acknowledgement for the server’s request (c4) and the
connection is established. The server starts to finalize
the connection by sending FIN control message (s7),
and correspondingly the client agrees to finalize the
connection by sending the acknowledgement (c7).
Since this protocol contains three-way handshaking
step and the packet resending step if there is no
acknowledgement, we adopt the reliable TCP
characteristics. However, when the last packet (#5) is
lost, the server does not resend the FIN message after
checking the connection of the client is closed in order
to achieve a better performance.

Reliable: This characteristic helps to keep track
of data that has been sent and received by ensuring
all transmissions send to their destinations.

Fig. 2 Protocol Flow of the RUDP

3.2 Characteristic Comparison among the

UDP, RUDP, and TCP
In order to compare the major characteristics of UDP,
TCP, and RUDP protocols, we list out considerable
issues which are valuable in communication Quality
of Service criteria [2].
• Connection-Oriented: A process of negotiation

occurs to establish a connection, ensuring that
both communication parties agree on how data is
to be exchanged.

• Bidirectional: Both communication parties on a
connection can send and receive in bidirectional,
regardless of which of them initiates the
connection.

•

•

Acknowledged: It is whether all transmissions
are acknowledged, so that it can provide
reliability.

•

Stream-Oriented: This characteristic allows
applications to send a continuous stream of data
for transmission. Applications don't need to worry
about making this into chunks for transmission.

•

Data-Unstructured: there are no natural
divisions between data elements in the
application's transmitted data.

•

Data-Flow-Managed: This ensures that data
flows evenly and smoothly, by dealing with
problems that arise along the way.

•

 Table 1 shows the comparison of UDP, TCP, and
RUDP in terms of the major characteristics of
communication explained above. The RUDP supports
all characteristics except Bidirectional,
Stream-Oriented, and Data-Flow-Managed
characteristics. Since these three characteristics are
not required in the ubiquitous environment we
consider, the RUDP seems to be the best solution of
fast and reliable communication to the ubiquitous
service environment. As in the table, the RUDP has
the property of fast communication as the UDP does,
and keeps the reliable property as the TCP does.

Table 1 Comparison of Communication Protocol
Characteristics

Characteristics UDP R-UDP TCP
Connection-Oriented No Yes

and fast
Yes
but
slow

Bidirectional No No Yes
Multiply-Connected
and
Endpoint-Identified

No Yes Yes

Reliable No Yes Yes
Acknowledge No Yes Yes
Stream-Oriented No No Yes
Data-Unstructured No Yes No
Data-Flow-Managed No No Yes

 Multiply-Connected and Endpoint-Identified:

It allows each party to have multiple connections
opened, either to the same IP or different IP
par-ties, and to handle each connection
independently without conflicts.

4 Experimental Results
In this section, we present the experimental results of
RUDP communication compared to the ordinary TCP
communication. After showing the testing
environment, we present the performance of two

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 3

protocols varying the numbers of packets, the sizes of
packets, and the UDP waiting time. All the
performance results are measured on both of Java and
.Net platforms.

4.1 Experimental Environment
In order to measure the performance of the proposed
protocol RUDP, we set up the following experimental
environment. The initial RUDP requesting server is
called a client, and the responding receiver is the
server. Each client runs in a separate thread and has a
separate connection to the server. The connection
establishing time and the disconnection time are
recorded. All tests run multiple times to assure
repeatability and to present the average of them.
Performance results are measured under the maximum
load by publishing as many messages as possible.
Each set of test is performed after rebooting systems.
All servers and clients are established before any
testing ramp-up periods are begun. All processes are
restarted before each test. During the test, no other
applications run and use resources of the system. All
performance data is collected at beginning and ending
of running time.
 The system topology consists of two machines: one
for executing all clients and the other for executing the
server. These systems were interconnected on an
isolated network using a single network switch to
remove unrelated traffic. Both server and client have
the same system configuration as follows:
• Hardware configuration: Intel Pentium 4 3.0Ghz,

1 Gb RAM.
• Platform configuration:

o Java version: Windows server 2003,
Java(TM) 2 Runtime Envi-ronment, Standard
Edition (build 1.4.2_04-b04), Java
Hot-Spot(TM) Client VM (build
1.4.2_04-b04, mixed mode)

o .NET version: Windows server 2003,
Microsoft .NET Framework version 1.1

• Network setting: Client and server are on the same
network segment. 100Mbps Ethernet connection.

4.2 Performance Measurement on Various

Numbers of Packets
In order to measure the performance improvement of
RUDP compared to TCP, the first set of experiments
is designed with various numbers of packets having
the same packet size. To generate packets, the client

machine creates threads as many as packets generated,
and starts to transmit those packets toward the server.
Thus, the number of packets is equal to the number of
clients connected to the server. By increasing the
number of packets, we measure the total elapsed time
of transmitting packets. The size of each packet is
1024 bytes and the maximum waiting time is one
second, where during the waiting time the RUDP
client or server waits for the reply and, if there is no
reply, it resends the packet that is previously sent.
 Figure 3 shows the experimental results of the total
elapsed time as the number of packets increases. As in
the figure, the RUDP shows faster from three times up
to twelve times than the TCP. Under the heavy traffic,
there occurs a few packet losses, but the RUDP
resends the packet according the RUDP protocol and
processes it correctly without reaching to the omission
failure or performance degradation. Also, with the
given system environment, the RUDP server usually
keeps about 500 connections in a second to process
those packets. The results on Java platform are almost
similar to those on .NET platform as in Figure 3;
results on Java are a few better than those on .Net.

.Fig 3 Performance Results with Various Numbers

of Packets

 In this experiment, we also find that the TCP has
the limitation to establish TCP communication
connections with the server. In the TCP
communication, a server cannot accept more than
4000 packets, since a server cannot create the large
number of sessions. In contrast, the RUDP does not
have any limitation to accept packets: the more the
clients want to send requests, the more the RUDP can
process. This is good to process a huge number of

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 4

short requests from a large number of ubiquitous
devices in ubiquitous communication environment.

4.3 Performance Measurement on Various

Sizes of Packets
The next experiment is to measure transmission time
by changing packets sizes. We fix the same number of
packets generated. In this scenario, the number of
generated packets is fixed to 2000 and the maximum
waiting time is 1 second.
 Figure 4 shows the performance results by
changing the packet sizes. When we use 2000 packets
to test, the TCP has all concrete results, compared to
the Figure 3. When we send various sizes of packets,
the elapsed time of packet transmission does not have
any big difference. Over all the range of sizes, the
packet transmission time of RUDP is four-time faster
than that of the TCP on both of Java and .NET
platforms. When the size of a packet is 16384 bytes,
the traffic load reaches the limitation by saturating the
network bandwidth.

Fig. 4 Performance Results with Various Sizes of
Packets

4.4 Performance Measurement on Various

RUDP Waiting Time
In this set of experiments, we want to observe the
effect of the RUPD waiting time on the overall
performance. We change the maximum waiting time
of RUDP from one second up to ten seconds in this
test set. The size of a packet is fixed to 1024 bytes and
we test with two different sets: one with 2000 packets
and the other with 5000 packets.
 Figure 5 shows the performance results by
changing the maximum waiting time of RUDP.
Although we change the values of the maximum
waiting time from one second up to ten seconds, the

total elapsed time does not change a lot in this
environment. Thus, choosing a small value of the
maximum waiting time is a reasonable choice in the
RUDP.

.Fig 5 Performance Results with Various Waiting

Times

5 Conclusion
In this paper, we introduced a reliable UDP protocol
that is proper for fast and reliable communication in
ubiquitous communication environments. The RUDP
is a reliable connection-oriented protocol, by taking
advantages of TCP, which uses a three-way
handshaking for connection establishment and a
resending mechanism for packet loss. We performed
several sets of experiments to analyze the performance
of the RUDP, comparing with that of the TCP. Over
all the range of sizes, the packet transmission time of
RUDP is more than four-time faster than that of the
TCP on both Java and .NET platforms. Compared to
the TCP that cannot accept more than 4000 packets,
the RUDP does not have any limitation to transmit
packets. The RUDP is good to process a huge number
of short requests from a large number of ubiquitous
devices in the ubiquitous communication
environments.

References:
[1] K. Yamazaki, Research directions for ubiquitous

services, Applications and the Internet, 2004.
Proceedings - 2004 International Symposium,
2004, pp.26-30.

[2] TCP/IP Guide, http://www.tcpipguide.com.
[3] J. He and S.H.G. Chan, TCP and UDP

Performance for Internet over Optical

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 5

http://www.tcpipguide.com/

Packet-switched Networks, Communications,
2003. ICC '03 IEEE International Conference,
Vol.2, 2003, pp 1350-1354.

[4] G. Xylomenos and G. C. Polyzos, TCP and UDP
Performance over a Wireless LAN, INFOCOM
'99. Eighteenth Annual Joint Conference of the
IEEE Computer and Communications Societies,
Vol.2, 1999, pp 439-446.

[5] A. Milanovic, S. Srbljic, and V. Sruk, Performance
of UDP and TCP Communication on Personal
Computers, Electrotechnical Conference, 2000.
MELECON 2000, Vol.1, 2000, pp 286-289

[6] S. Zeadally, TCP-UDP/IP Performance over ATM
on Windows NT, IEEE ATM Workshop, 1997. pp
63-72

[7] E. He, J. Leigh, O. Yu, and T. A. DeFanti, Reliable
Blast UDP: Predictable High Performance Bulk
Data Transfer, IEEE Cluster Computing, 2002, pp
317-324.

[8] M.W. Bigrigg, Ubiquitous System Software, IEEE
Pervasive Computing, Vol.3, No.3, 2004, pp
57-59

[9] U. Saif and D.J. Greaves, Communication
primitives for ubiquitous systems or RPC
considered harmful, International Conference on
Distributed Computing Systems Workshop, 2001,
pp 240-245

[10] N. Davies and H.W. Gellersen, Beyond
prototypes: challenges in deploying ubiquitous
Systems, IEEE Pervasive Computing, Vol.1,
No.1, 2002, pp 26-35

[11] M. Matsumoto and T. Itoh, Study of Server
processing Load evaluations in Ubiquitous
Communication Environments, The International
Symposium on Applications and the Internet
Workshops, 2004, pp 689-695

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 6

