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Abstract: The aim of this article is to examine the properties and qualities of chaotic mixing by considering a two- 
and three-dimensional cavity flows. Finite volume method is employed to obtain accurate descriptions of the velocity 
field which form the basis for mixing analysis. Furthermore, we also got the mixing efficiency using Poincaré section 
and Lyapunov exponent. In the present study, the primary form of chaotic mixing is generated by using time-periodic 
electro-osmotic flow, driven by an electric filed. The surface zeta-potential causes different flow fields which are 
susceptible to chaotic advection and mixing. Depending on the above properties, a non-uniform slip-velocity is 
produced by imposing four non-uniform zeta-potential surfaces to the bottom wall during first half of the period and 
to the top wall during second half of the period, respectively. The various parameters involved in this study are the 
Peclet number and the modulation period. The effect of these parameters on the flow patterns within the cavity is 
investigated numerically. There is also an important value of mixing index which describes the quality of mixing, is 
also obtained.   
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1. Introduction  

There has been a recently developing surge of 
fundamental properties of the mixing due to its 
application in manufacturing, food, pharmacology and 
other industries. Some researchers are successfully 
studied on electro-osmotic flows in the non-uniform 
zeta-potentials such as Qian and Bau [13], Ajdari [14], 
H. Aref [15] and etc. Understanding of this article can 
help to crease a good mixing in cavity flow by switching 
the various flow fields which are caused by imposing 
the non-uniform zeta-potential surfaces to the walls of 
cavity. 
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Fig.1 2-D Geometry of 
the cavity and the 
periodic non-uniform 
boundary conditions at 
the top and the bottom 
walls. 

 
 
2. Problem Formulation and Analytical 

Solution 
2.1 Two-dimensional cavity flow 
 We have considered the unsteady two-dimensional 
motion of an incompressible fluid within a closed square 
cavity where four electrodes are attached to the bottom 
and top walls of it as shown in Figure 1. This generates 
the relevant electro-osmotic slip velocity at the walls. 

     L

The governing equations for this problem are 
written in a dimensionless form as follows 

1 = 0.2L, L2 = 0.6L 
 
 

Pattern A and B corresponds with the flow fields 
applied to bottom wall during the first half of the period 
and to top wall during the second half of the period, 
respectively. 
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where C is the concentration, Re(=UL/ν) is the 
Reynolds number and Pe(=UL/D) is the Peclet number. 
L is the characteristic length, U is the characteristic 
velocity, D is the concentration diffusivity, ν  is the 
kinematic viscosity and t is the dimensionless time. 
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 The governing equations are discretized in time 
using finite volume method. The Explicit Euler method 
is used for integration of momentum and concentration 
equations in time. 

The boundary conditions for velocity field and 
concentration are: 
At the side walls:  
• Velocities: No-slip condition u = v = 0 

• For x and y momentum equations: 
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At the top and bottom walls: 

( ) 1n
j,ij,i1j,i

n

1n
j,i

n
j,i g.tPP

y
tvv −

+
− Δ+−

Δ
Δ

−=• Velocities: No-slip condition v = 0    (11) 

0
y
C
=

∂
∂  • Concentration: zero-gradient condition 

The convection and diffusion terms combined in ‘f’ and 
‘g’. At the bottom wall:  
• For concentration equation • During  first half period  2/Tt0 <≤
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Where Ci,j: concentration at position (i,j) in the 
computational domain;

where T is modulation period. 
C : the average concentration. 

N: is the total number of nodes. 
 
• During second half period  Tt2/T ≤≤
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2.2 Three-dimensional cavity flow 
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 Fig.3 3-D Geometry 

of the cavity  
  

  
  
  

Fig.2   The non-uniform boundary conditions for  The governing equation for this case is same as 
given in section 2.1 but u= (u,v,w) u-velocity at the top and bottom walls. T. Also the fluid 
properties inside cavity do not change. The zeta-
potential is applied to the surfaces as shown in Figure 3 
where it is applied to walls in 2-D case. The 3-D code 
will be developed using the FVM method. 

 
In this case, we used the non-uniform staggered grid 

system, obtained by transformation from the Castien 
coordinates (x, y) to the new coordinates (ξ, η) as 
follows: 



3. Results and Discussion 2.3  Mixing effect using Poincaré section and 
Lyapunov exponent 3.1   Results for 2D case 
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• Poincaré section is a graphical analysis tool to 
capture interesting features such as mixing zones in 
cavity flow. Otherwise, it is also a surface in the phase 
space that cuts across the fow of a given system. With a 
2D cavity flow, the positions of a point in calculation 
domain are advanced by 4th Runge-Kutta method as 
follows: 
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The FORTRAN code has been developed for the 
2D case which gave us quite good results. The 
numerical solutions were obtained for the grid 101x101, 
which was selected by grid convergence test and for the 
fixed Reynolds number Re = 10.  The mixing process is 
attained steady state in whole domain of cavity after 
total time steps Nsteps = 500,000 for Pe = 2000 and 
Nsteps = 600,000 for Pe = 10,000. In each case, the 
results are obtained for the five values of modulation 
periods 1, 5, 10, 15 and 20. 

 (18) 

   (19) 

Mixing performance is obtained from solving 
concentration equation correspond with various initial 
conditions of concentration distribution. The Poincaré 
section and Lyapunov exponent are employed to get 
mixing index for various boundary conditions of 
streamline velocity.  
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Where K1X, K1Y, … K4Y  is the coefficences of Runge-
Kutta. 

 
 • Lyapunov exponent describes chaotic mixing by 

determining the position of two initially nearby particles 
will be extremely different after a certain time. 

 
 
 The best mixing effect will be obtained when 

Lyapunov exponent approaches to a maximum value. 
The largest Lyapunov coefficient should be positive in 
the chaotic state, when the Lyapunov exponent is 
defined as: 
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(b) second half period.  
 

Where T is modulation period, Li is distance between 
two particles at the specified time step and d

With above boundary conditions, we got the 
velocity field which is symmetric for every half period. 
The streamlines appear four eddies, two at the bottom 
wall during first half period and remaining two at the 
top wall during second half period. 

0 is distance 
between the two initial particles. 

 
 
  
  
  
  
  

Fig. 4  Schematic for calculation for calculating the 
Lyapunov exponent. 

 
 

  
We choose arbitrary two initial points to track the 

path of the main particle and to calculate the Lyapunov 
exponent in the mixing zone. The distance between the 
two particles should be less than the initial distance d

 
 
Fig. 6  Steady state u and v velocities along the vertical and 

horizontal center line of cavity. 0. 
 



The grid convergence test has been carried out 
considering 51x51, 101x101 and 201x201 grid systems. 
The following graph gives the details of the test. It 
found that 101x101 grid system is suitable for our case.   
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Fig. 7 Grid convergence test. 
 
3.1 Mixing effect with respect to various initial 
conditions of concentration distribution 
  
 
 
 
 
          (8a)    (8b) (8c) (8d) 
Fig.8 Concentration distribution conditions used in the 
simulation; C = 1 for black and C = 0 for white. (a) HS – 
horizontal separation; (b) VS – vertical separation; (c) DS – 
diagonal separation and (d) SS – square separation 

 
The results show that, for the small Peclet number 

(Pe = 2000), the change in mixing pattern is negligible 
with varying modulation periods (1 to 20) at a specified 
time step. However, when we increase the Peclet 
number (Pe = 10000) the mixing pattern is rather 
different with respect to different modulation periods. 
Especially, with the higher value of modulation, the 
more early mixing process is obtained at a specified 
Peclet number. Furthermore, we know that the small 
Peclet number causes a high diffusion, so the mixing 
process quicker for low Peclet numbers than the higher 
Peclet numbers.  

The best mixing index are collected for every initial 
condition at Pe = 2000 and Pe = 10000 (Figures. 10 and 
11). We found that mixing effect is specifically affected 
by the initial condition of C-distribution. Among these 

results, the best mixing effect is achieved in case of  HS 
(Pe= 2000) and DS in case of  Pe = 10000. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig.9  Mixing effect with respect to various initial 
conditions of concentration distribution at t= 20 (RHS- 

results for Pe = 2000; LHS- results for Pe = 10000) 
 

 
 
 
 
 
 
 
 
  
 
 

Fig. 10 Variation of  Mixing index with respect to 
dimensionless time for Pe = 2000. 

 
 For Pe=2000, the mixing is better compared with 

Pe = 10000. That means at low Pe number, diffusion is 



1

more, so many thin layers will be observed in flow 
pattern.  

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.8 
 0.6 
 

t

D
-M

ix
in

g
in

de
x

0 10 20 30 40 50 60

0.2

0.4

0.6
0.8

1

HS - Mo. period = 15
DS - Mo. period = 10
SS - Mo. period = 20
HS - Mo. period = 15

Pe = 10000

0.4
 

  
 0.2 
  0

  
  1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 0.8 
 

0.6
 

  
0.4

  
 0.2 

Fig. 11  Variation of  Mixing index with respect to 
dimensionless time for Pe = 10000. 
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3.2   Resutls for Poincaré section and Lyapunov 
exponent 
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Fig. 13 The deformation of a material of edge sixe 0.1 

inintially (t = 0) cemtred at (0.45, 0.45). 
 
 

  
We can see the mixing effect is better gradually when 
we increase the modulation period. At the smallest 
modulation period, the trajactory of the particle is clear  
as streamlines in chaotic and regular domains. But 
when modulation period increases  the particles are 
distributed uniformly in whole domain of cavity. 
Therefore, we can get best mixing effect when we input 
the enough high value of modulation period. The 
deformation of blob is also considered with respect to 
various values of modulation periods. After two periods, 
the square blob has already turned into thin line. When 
the modulation period is relatively small, the blob 
stretches, deforms and elongates slowly. At T = 2, all 
particles just wandered around the small fixed zone 
after 20 periods.The blob is deformed fully and the 
fluid particles spread to cover almost the entire cavity 
domain with respect to T= 20. 

           
 
 
 
 
 
 
 
 
 

 
 
     

 
 
 
 

Furthermore, when we impose zeta-potential 
surfaces to another wall which means we change 
boundary condition at the walls of cavity; we also get 
the  rather different mixing effects. 

 
    

Fig.12  Poincaré section with respect to various modulation 
periods. 
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12), we computed the Lyapunov exponent for various 
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 Fig.14 Lyapunov exponent  at various modulation periods. 
  
 The above results were obtained by choosing the two 

initial points (0.5, 0.4) and (0.5, 0.4-D
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0) where D0 = 10-7  . 
Lyapunov exponent is largest (LE = 0.099) with respect 
to value of modulation period T= 20. These results 
matched with which obtained in previous section 
correspond with solving the concentration equation.     

 
 
 

Fig.14  Variation of  Mixing index with respect to 
dimensionless time for Pe= 2000 (above) and for Pe= 

10000 (below). 
 

3.2  Results for 3-D case 
  
Additional results for 3-D case will be implemented 

and presented in conference. 
 
 

  
3. Conclusion   

 The primary aim of the present work paper was to 
develop the numerical code of finite element method 
for solving the chaotic mixing properties of flows 
generated by solid walls undergoing alternating 
boundary conditions periodically in every period at the 
top and bottom walls in a two dimensional cavity. The 
chaotic mixing is enough good depend on the 
modulation of the chosen period for imposing of the 
boundary conditions at the solid wall of cavity and the 
Pelec number. 

 
 
 
 
Fig. 14 Streamlines in plane (x,z) at y =1/2 correspond to  

first half period (14a) and second half period (14b) 
 
 
 

The fairly good results of chaotic mixing in this 
case are to demonstrate FVM is also an advantageous 
method for simulation of mixing problems. The 
Poincaré section and Lyapunov exponent are also the 
good methods to obtain the mixing performance in this 
case. 

 
 
 
 
 
 

 Fig. 15 Streamlines in plane (x,z) and  (y, z) 
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