
A Puzzle Solver and Its Application in Speech Descrambling

YU-XIANG ZHAO, MU-CHUN SU, ZHONG-LIE CHOU, AND JONATHAN LEE
Department of Computer Science & Information Engineering

National Central University
TAIWAN, R.O.C.

 http://cilab.csie.ncu.edu.tw/

Abstract: - The security problem of speech communication has always been a demanding problem in military
and business areas. A common approach to realizing end-to-end security is the use of a scrambler. Most of the
scramblers are based on permutation of speech signals in the time domain and/or frequency domain. On the
other hand, descramblers are used to eavesdrop information from scrambled speech signals. In this paper we
propose a new approach to implement a descrambler. We treat the descrambling problem as a puzzle solving
problem. In this considered puzzle problem, each piece is a rectangular-shaped gray scaled image puzzle. We
propose two different methods to assemble puzzles. While the first method is based on human heuristics, the
second method is based on the Ant Colony System (ACS) algorithm. Sixty scambled images were used to test
the proposed methods.

Key-Words: - puzzle, speech scrambling, optimization algorithm, ant colony system, swarm intelligence

1 Introduction

Secure speech communications have been a major
concern in the military and business areas. The
techniques for achieving end-to-end security of
speech communications have been evolved over
many years [1]-[11]. These techniques can be
dichotomized into two categories: digital speech
encryptors and analog speech scramblers. Digital
speech encryptors can offer high grade security via
the use of encryption; however, they usually require
high bit rates to maintain speech quality. Therefore,
analog speech scramblers, which can provide
considerable grade security with acceptable speech
quality, are still widely adopted in many applications.

The aim of an analog scrambler is to corrupt a
speech signal as much as possible to prevent
eavesdroppers from tapping information from
communication channels, but the scrambled speech
signal can still be recovered to an intelligible speech
signal at the destination. Speech signals can be
scrambled in either the time domain or the frequency
domain. There are two main ways to scramble speech
signals in the time domain [3]. They are time element
reversal and time element permutation. As for the
frequency domain scramblers, there are also two
main approaches: inverters and band scramblers.

To increase security, a hybrid scrambler which
scrambles speech signals in both time and frequency
domain is usually adopted. A practical example of a
speech signal scrambled in both time and frequency
is shown in Fig. 1. The original speech signal in time
domain is shown in Fig. 1(a) and its corresponding
spectrogram is shown in Fig. 1(c). We scramble the

speech signal in both time and frequency domain.
The scrambled spectrogram is shown in Fig. 1(d) and
its corresponding speech signal in time domain is
shown in Fig. 1(b). If we directly output the
scrambled signal via a speaker we won’t be able to
tell what message was conveyed by this voice signal.
For a scrambled signal with M frequency bands and
N time segments, if there is no information about
how the signal was scrambled we are unable to
recover the signal from the scrambled signal since
there are)!(NM × permutations. Therefore, it is a
challenge to descramble scrambled signals.

(a) (b)

(c) (d)

Fig. 1. The idea of scrambling a speech signal: (a) the
original speech signal in time domain, (b) the
scrambled speech signal in time domain. (c) the
original spectrogram, and (d) the scrambled
spectrogram.

In this paper, we propose an interesting approach

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 171

to descramble scrambled signals. We regard the
problem of descrambling scrambled signals as a
puzzle solving problem. For this special puzzle
problem, each puzzle piece is a rectangular-shaped
gray scaled image. We propose two different methods
to assemble puzzles. While the first method is based
on human heuristics, the second method is based on
the Ant Colony System (ACS) algorithm [12]-[14].
The remaining of this paper is as follows. Section 2
gives a brief review of puzzle problems. Section 3
introduces the algorithm for solving the puzzle
problem. The simulation results are presented in
section 4. Finally, section 5 concludes the paper.

2 Background

In this section we will briefly review the puzzle
problem. Puzzle problems are popular benchmarks
for the evaluation of techniques such as computer
vision, artificial intelligence, etc. many studies have
been done to solve many different types of puzzle
problems. In [15], two combinatorial puzzles, the
n-Queen problem and polynomino puzzle problem,
were solved by using a neural-network-based energy
minimization method. While the goal of the n-Queen
problem is to place n queens on an nn× chessboard
such that they cannot capture one another, the goal of
the polynomial puzzles problem is to fill variously
shaped polynominoes exactly in a rectangle board.
Yamamoto et al. proposed a neuro-based
optimization algorithm for the 3-D rectangular puzzle
problem whose goal is to arrange the irregular-shaped
blocks to perfectly fit into a fixed 3-D rectangular
shape [16]. Two new approaches based on the
Hopfield network were proposed to solve another
kind of puzzle problem. In this of puzzle problem,
there is a 55× table, numbered 1 to 24 together with
an empty box, used for moving the numbers [17]. The
goal of this puzzle problem is to use the empty box to
move the numbers around and finally end with the
numbers sorted in ascending order.

In addition to the aforementioned puzzle problems,
the jigsaw puzzle problem is another well known
benchmark since it can be applied to diverse practical
problems such as restoration of archaeological
findings, repair of broken objects, molecular docking
problem for drug design, etc [18]. Many different
approaches have been proposed to solve the jigsaw
puzzle problems [18]-[29]. A jigsaw puzzle solving
system usually involves many techniques such as
computer vision, partial boundary matching, pattern
recognition, and combinatorial optimization. While
some approaches [19]-[24] principally utilize the
geometric shape information of the puzzle pieces, the
jigsaw puzzle solver proposed in [18] uses chromatic

information and partial boundary information. The
assembly algorithms employed at the final stage can
be roughly divided into three approaches. One
approach purely depends on the trial-and-error
scheme to assemble puzzle on the piece-by-piece
basis [26]. Some approaches utilize heuristics to
reduce the search space and then regard the assembly
problem as the traveling salesman problem [18], [25].

In this paper, we consider a special puzzle
problem where the shape of each puzzle piece is a
rectangle. To our best knowledge, only one article
addressed such a puzzle problem [30]. Toyama et al.
proposed a GA-based approach to solve the rectangle
piece puzzle assembly problem. In the problem
considered by them, the shape of each puzzle piece is
a rectangle and a picture of each puzzle is a black-and
white image. In addition, they assume that each
puzzle piece does not rotate. Fig. 2 illustrates such a
puzzle problem.

(a) (b)

Fig. 2. An example of a rectangular puzzle problem:
(a) the original image, and (b) the scrambled puzzle

with 8 x 8 pieces.

3 The Assembly Method
For a puzzle problem with NM ×

rectangular-shape gray scaled image pieces, there are
)!(NM × permutations. Therefore, it is a challenge

to solve puzzle problems when the number of puzzle
pieces is large.

We propose two different methods to solve this
kind of puzzle problems. The first method referred to
as the heuristic method which is based on common
human heuristics in puzzle assembly. The second
method is to apply the ACS algorithm to assemble
puzzles.

3.1 The Heuristic Method

For jigsaw puzzles, puzzle pieces can be divided
into three classes: (1) corner pieces where each piece
is with two straight edges, (2) one-edge pieces where
each piece is with one straight edge, and (3) internal
pieces where each piece is without straight edge [24].
One may first assembly outer frame pieces which are
consisted of corner pieces and one-edge pieces. Then
a greedy algorithm can be used to assemble the
interior [22]. Unfortunately, puzzle pieces in our

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 172

puzzle problems are all of the same shape. Therefore,
straight line sides can’t be used to decide which
pieces are corner pieces since each piece has four
straight lines.

In this paper, we first propose to adopt the
heuristic method to assemble puzzle pieces. The goal
of the assembly procedure is to place puzzle pieces in
the scrambled map to their correct locations in the
destination puzzle map as shown in Fig. 3. Before we
present the heuristic method, we have to introduce
the definitions of the so-called “vertical distance”
and “horizontal distance”. Similar to the distance
definition proposed in [30], the distance between two
pieces is defined as the root mean square error
between every adjacent pixel pair on the touching
border line of two pieces. Then the vertical
(horizontal) distance is the distance between two
vertically (horizontally) connected pieces, as shown
in Fig. 4.

Fig. 3. The three cases when the ith puzzle piece in
the scrambled puzzle map is assigned to the location

(h, k) of the destination puzzle map.

Fig. 4. The distance definition.

The first thing we need to decide is which piece is

the upper left corner piece. After the upper left corner
piece has been found, the piece which has the
smallest “horizontal distance” to the upper left
corner piece is chosen to be the second piece on the
first row of the puzzle. The remaining pieces on the
first row can be chosen according to the same rule.
After the first row has been decided, the piece which
has the smallest “vertical distance” to the upper left

corner piece is chosen to be the first piece on the
second row of the puzzle. According to the same
rules all the remaining pieces can be found piece by
piece until all pieces are placed to their correct
positions.

Now we return to the method of finding the upper
left corner piece. The simplest way is to try each
piece as a tentative upper left corner piece and then
proceed to assemble the remaining pieces. Finally,
the best resultant puzzle from the NM × resultant
puzzles is chosen to be the solution. The measure for
evaluating the quality of the resultant puzzle will be
given in Eq. (5).

From many simulation results, we found that the
heuristic method could have 50% chance of
successfully solving puzzle problems. We propose to
adopt the ACS algorithm to further improve the
performance of the heuristic method.

3.2 The ACS-Based Method

Recently, the social insect metaphor for solving
problems has attracted a lot of attention from many
different fields [31]-[32]. The ant colony
optimization approach initiated by Dorigo [12]-[14],
in collaboration with Colorni and Dorigo [33], has
been receiving increasing amounts of attention due
to its simplicity. The basic idea of the ACS algorithm
is to use a positive feedback mechanism based on an
analogy with the trail-laying and trail-following
behavior of ants to reinforce those portions of good
solutions that contribute to the quality of these
solutions [31].

Instead of directly apply the original ACS
algorithm to solve the puzzle problem we have to
make several modifications in order to make the
ACS algorithm to fit our problem. The probability
for ant k to go from the ith puzzle piece to the jith
puzzle piece while building its tth tour is according
to the following transition rule:

∑∈
⋅

⋅
=

k
iIl ijij

ijijk
ij t

t
tP β

β

ητ
ητ

][)]([
][)]([

)((1)

where β is an adjustable parameter which controls
the relative weight of the visibility, ijη . The set k

iJ
is consisted of the pieces which have to be visited by
ant k when the ant is on piece i. The visibility , ijη , is
the so-called visibility which is based on strictly
local information and represents the heuristic
desirability of choosing puzzle piece j when in
puzzle piece i. The trail intensity, ijτ , is the virtual
pheromone trail which represents the learned

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 173

desirability on the edge connects the ith puzzle piece
to the jth puzzle piece. Note that at the first iteration,
the piece j with the largest value of k

ijP is selected.
Assume that piece i has been assigned to the

location (h, k) of the destination puzzle map. The
value of the visibility, ijη , is defined according to
which one of the following three cases is met (as
shown in Fig. 4).

Case 1: If 11and1 −≤≤= Nkh then

),(/1 jihij ppd=η .
Case 2: If 11and −≤≤= MhNk then

),(/1)1,(j
d
hvij ppd=η . The puzzle piece, d

hp)1,(,
represents the puzzle piece which has been assigned
to the location (h,1) of the destination puzzle map.
Case 3: For the other situations,

)],(),(/[1 1,1(j
d

khvjihij ppdppd +−+=η . The puzzle

piece, d
khp)1,1(+− , represents the puzzle piece which has

been assigned to the location (h-1,k+1) of the
destination puzzle map.

The tour length visited by each ant is computed as
follows:

∑∑

∑∑

=

−

=
+

=

−

=
+

+

=

N

j

M

i

d
ji

d
jiv

M

i

N

j

d
ji

d
jih

k

ppd

ppdtL

1

1

1
),1(),(

1

1

1
)1,(),(

),(

),()(
 (2)

The tour length is a measure which reflects the
degree of the completeness of the resultant puzzle
map assembled by ant k.

The pheromone trail information is updated
on-line during the problem solving procedure to
reflect the experience acquired by ants. After the
completion of an assignment, the ant that generated
the best tour is allowed to globally update the
concentrations of pheromone on the edges belonging
to the best tour as follows:

)()()1()(ttt ijijij ττρτ ∆+−← (3)

+=∆ Ltij /1)(τ (4)

where +L is the length of the best tour. In addition to
the global updates, local updates of pheromone trails
will be performed to make other potential solution
can emerge. Detailed descriptions about AS and
ACS algorithm can be found in [31].

4 Simulation Results
Twenty images downloaded from the database in

the Web site Caltech 101 [34] were used to evaluate
the performance of the proposed puzzle-solving
methods. Fig. 5 shows some examples of the images
used in our experiments. Each image was divided
into three different sizes, 44× , 64× , and 84× .
Then each divided image was randomly scrambled to
consist of the data set to be solved by our methods.

Two measures were used to evaluate the
performance of the proposed methods. The first
measure was the ratio of the number of the correct
resultant puzzle maps to the number of the total
scrambled puzzle maps. The second measure reflects
how much completeness has been improved. These
two measures are defined as follows:

imagestotaltheofNumber
imagescorrecttheofNumberCr = (5)

%100×
−
−

=
os

rs
c CC

CCC (6)

where Co, Cs, and Cr represent the completeness
degree of the original image, the scrambled image,
and the resultant image, respectively. The degree of
completeness is computed by Eq. (2). Note that the
completeness degree of the original image is not zero
as we originally expect.

(a)

(b)

Fig. 5. Some testing images. (a) The original images.
(b) The scrambled images.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 174

(a)

(b)

Fig. 6. Some resultant images. (a) The unsuccessful
images achieved by the heuristic method. (b) The
successful results achieved by the ACS-based
method.

Table 1. The performance achieved by the proposed

methods.
Methods Measure 4 x 4 4 x 6 4 x 8

rC 50% 50% 50% Heuristic

Method
cC 93.08 91.08 93.96

rC 75% 70% 60% ACS-based

Method
cC 98.67 97.84 97.25

Table 1 shows the performance achieved by the

two methods. The ACS-based method outperformed
the heuristic method based on the comparisons of the
two measures. For the ACS-based method, the
smaller the number of the puzzle pieces the better the
performance could be achieved. Fig. 6 shows the
images which could be successfully solved by the
ACS-based method but not the heuristic method.

5 Conclusions

In this paper we treat the descrambling problem
as a special puzzle solving problem. In this
considered puzzle problem, each piece is a
rectangular-shaped gray scaled image puzzle. Two
different approaches to solving assemble the special
puzzles were proposed. The first method is based on

common human heuristics. It is very straightforward
but effective for many puzzles problems. For some
puzzle problems where the first approach doesn’t
work well, the second approach which is based on
ACS algorithm can provide appealing solutions.

Acknowledgements

This work was partly supported by the NSC
Program for Promoting Academic Excellent of
Universities (Phase II) under the grant number
NSC-95-2752-E-008-002-PAE, the National
Science Council, Taiwan, R.O.C, under the NSC-95-
2221-E-008-128 and the NSC-95-2524-S-008-001,
and the NSC-95-2524-S-008-005-EC3, the Ministry
of Economic Affairs under the 95-EC-17-A-02-S1-
029 and the NCU Project of Promoting Academic
Excellence & Developing World Class Research
Centers-Applied Informatics and Creative Contents:
Service-Oriented Information Platform.

References:
[1] N. S. Jayant, “Analog scramblers for speech

privacy,” Computers and Security, Nov.-Dec.
1982.

[2] H. J. Beker, and F. C. Piper, Secure Speech
Communications, Academic, 1985.

[3] A. Matsunaga, K. Koga, and M. Ohkawa, “An
Analog Speech Scrambling System Using the
FFT Technique with High-Level Security,”
IEEE Journal on Selected Areas in
Communications, vol. 7, no. 4, pp. 540-547,
May 1989.

[4] E. V. Stansfield, D. Harmer, and M. F. Kerrigan,
“Speech processing techniques for HF radio
security,” IEE Proceedings on Communications,
Speech and Vision, vol. 136, no. 1, pp. 25-46,
Feb. 1989.

[5] R. Yarlagadda, and K. Rao, Hadamard matrix
analysis and synthesis: with applications to
communications and signal/image processing,
Kluwer Academic Publishers, 1997.

[6] V. Senk, V. D. Delic, and V. S. Milosevic, “A
New Speech Scrambling Concept Based on
Hadamard Matrices,” IEEE Signal Processing
Letters, vol. 4, no. 6, pp. 161-163, June 1997.

[7] A. Matsunaga, D. Koga, and M. Ohkawa, “An
Analog Speech Scrambling System Using the
FFT Technique with High-Level Security,”
IEEE Journal on Selected Areas in
Communications, vol. 7, no. 4, pp. 540.-547,
May 1989.

[8] B. Goldburg, S. Sridharan, and E. Dawson,
“Design and Cryptanalysis of Transform-Based
Analog Speech Scramblers,” IEEE Journal on

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 175

Selected Areas in Communications, vol. 11, no.
5, pp. 735-744, June 1993.

[9] R. J. Sutton, Secure Communications, John
Wiley & Sons, Inc., 2002.

[10] Y. Wu, and B. P. Ng, “Speech Scrambling with
Hadamard Transform in Frequency Domain”,
Proceedings 2002 IEEE 6th International
Conference on Signal Processing, vol. 2, pp.
1560- 1563, Aug. 2002.

[11] J. Ahmed, and N. Ikram, “Frequency-domain
speech scrambling/descrambling techniques
implementation and evaluation on DSP,”
Proceedings IEEE INMIC’2003, Dec. 2003.

[12] M. Dorigo, “Ottimizzazione, Apprendimento
Automatico, ed Algoritmi Basati su Metafora
Naturale.” Ph.D. Dissertation, Politecnico di
Milano, Press, 1992.

[13] M. Dorigo, and L. M. Gambardella,“Ant
Conlony System: A Cooperative Learning
Approach to the Traveling Salesman Problem,”
IEEE Trans. Evol. Comp. 1, pp. 53-56, 1997.

[14] M. Dorigo, and L. M. Gambardella, “Ant
Colonies for the Traveling Salesman Problem,”
BioSystems 43, pp. 73-81, 1997.

[15] M. Kajiura, Y. Akiyama, and Y. Anzai,
“Solving large scale puzzles with neural
networks,” Proceedings IEEE TAI’89, pp.
562-569, Oct. 1989.

[16] H. Yamamoto, H. Ninomiya, and H. Asai,
“Application of Neuro-Based Optimization to
3-D Rectangular Puzzles,” Proceedings
IEEE&INNS/IJCNN’98 (WCCI’98), May 1998.

[17] J. Taheri, “Hierarchical Hopfield neural
network in solving the puzzle problem,”
Proceedings 2004 IEEE International Joint
Conference on Neural Networks, vol. 3, pp.
2337-2342, July 2004.

[18] M. G. Chung, M. Fleck, and D.A. Forsyth,
“Jigsaw Puzzle Solver Using Shape and Color,”
Proceedings IEEE ICSP’98, pp. 877–880,
1998.

[19] H. Freeman, and L. Gardner, “Apictorial jigsaw
puzzles: the computer solution of a problem in
pattern recognition,” IEEE Transactions on
Electronic Computers, vol. 13, pp. 118-127,
April 1964.

[20] G. M. Radack, and N. I. Badler, “Jigsaw puzzle
matching using a boundary-centered polar
encoding,” Computer Graphics and Image
Processing, vol. 19, pp. 1-17, 1982.

[21] H. Wolfson, E. Schonberg, A. Kalvin, and Y.
Lamdan, “Solving jigsaw puzzles by
computer,” Annals of Operations Research, vol.
12, pp. 51-64, 1988.

[22] T. Altman, “Solving the jigsaw puzzle problem
in linear time,” Applied Artificial Intelligence,
vol. 3, pp. 453-462, 1989.

[23] R. W. Webster, P. S. LaFollette, and R. L.
Stafford, “Isthmus critical points for solving
jigsaw puzzles in computer vision,” IEEE
Transactions on Systems, Man and Cybernetics,
vol. 21, pp. 1271-1278, 1991.

[24] C. A. Rothwell, A. Zisserman, D. A. Forsyth,
and J. L. Mundy, “Canonical frames for planar
object recognition,” Proceedings of 2nd
European Conference on Computer Vision, pp.
757-772, 1992.

[25] G. C. Burdea, and H. J. Wolfson, “Solving
jigsaw puzzles by a robot,” IEEE Transactions
on Robotics and Automation, vol. 5, no. 6, pp.
752-764, 1989.

[26] D. Kosiba, P. M. Devaux, S. Balasubramanian,
T. Gandhi, and R. Kasturi, “An Automatic
Jigsaw Puzzle Solver,” Proceedings of the 12th
IAPR International Conference on Pattern
Recognition, IEEE Computer Society Press,
Jerusalem, vol. 1, pp. 616-618. 1994.

[27] J. D. Bock, P. D. Smet, W. Philips, J. D'Haeyer,
“Constructing the Topological Solution of
Jigsaw Puzzles,” Proceedings ICIP’04, pp.
2127-2130, 2004.

[28] D. Goldberg, C. Malon, and M. Bern, “A global
approach to automatic solution of jigsaw
puzzles,” Proceedings of the 18th Annual
Symposium on Computational Geometry, pp.
82-87, 2002.

[29] F. H. Yao, and G. F. Shao, “A shape and image
merging technique to solve jigsaw puzzles,”
Pattern Recognition Letters, vol. 24, no. 12, pp.
1819-1835, 2003.

[30] F. Toyama, K. Shoji, and J. Miyamichi,
“Assembly of Puzzles Using a Genetic
Algorithm,” Proceedings ICPR’02, vol.4, pp.
389-392, 2002.

[31] E. Bonabeau, M. Dorigo, and G. Theraulaz,
Swarm Intelligence: From Natural to Artificial
Systems, Oxford University Press, 1999.

[32] J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm
Intelligence, New York: Academic Press, 2001.

[33] A. Colorni, M. Dorigo, and V. Maniezzo,
“Distributed Optimization by Ant Colonies,” In
Processings First Europ. Conference on
Artifical Life, edited by F. Varela and P.
Bourgine, Cambridge, MA: MIT Press, pp.
134-142. 1991.

[34] C. Chang, and C. Lin, LIBSVM: a library for
SVMs, 2001. Available: http://www.vision.
caltech.edu/Image_Datasets/Caltech101/Caltec
h101.html.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 176

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

