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Abstract: This paper proposes a novel technique for the Chinese remainder theorem (CRT) with the moduli (2n −
1, 2n, 2n +1). Hardware implementation of the proposed CRT algorithm utilizes two kinds of parallel adders. One
is referred to as modulo signed-digit m adder (MSDA) which performs a fast propagation-free addition and allows
for the annihilation of carry or borrow chains using redundant binary number representation. Another implements
parallel prefix adder which is the evolution of carry-lookahead adder (CLA). Compared to 16-digit Piestrak’s high-
speed converter , the computation time is shorten by 34%.
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1 Introduction

The residue number system (RNS) is an integer num-
ber system whose most important property is that
additions, subtractions and multiplications are inher-
ently carry-free [1, 2]. The residue number architec-
ture with the three moduli (2n − 1, 2n, 2n + 1) has
been widely used, since the residue addition can be
performed by a binary adder [3, 4].

The residue number arithmetic can not be used
for some applications, because the RNS does not have
weights in the residue digits. Residue-to-binary num-
ber conversions are the crucial steps for any successful
RNS application. For general moduli sets, residue-to-
binary number conversions are based on the Chinese
Remainder Theorem or Mixed Radix Conversion.

The three moduli (2n− 1, 2n, 2n + 1) can be per-
formed efficiently with limited amount or even with-
out ROM [5, 6, 7]. The complexity of the conversion
has been greatly reduced by using compact forms with
the multiplicative inverse and the properties of modu-
lar arithmetic. However, since the residue arithmetic
mod (2n+1) requires (n+1) bits to represent (2n+1)
states, it is not easy to perform mod (2n + 1) arith-
metic with a end-around-carry adder. To overcome the
drawbacks, several residue-to-binary arithmetic con-
verters for the moduli set (2n − 1, 2n, 2n−1 − 1) have
been proposed [8, 9].

In this paper, we present a novel CRT algorithm
using the redundant representation to improve the
computation time. The primary advantage is that it
is easy to represent (2n + 1) states for mod (2n + 1)

with a signed-digit (SD) number representation. Wei
et al.[10] have shown that it is efficient to use the
SD number representation to design the three mod-
uli (2n − 1, 2n, 2n + 1) adders without carry prop-
agation. The multiplicative inverses of three moduli
(2n− 1, 2n, 2n +1) are also used to simplify our con-
version algorithm.

2 Preliminaries

2.1 Residue Number System

In this paper, we consider a residue number system
which has a set of relatively prime moduli, {2n, 2n −
1, 2n + 1}. A residue digit with respect to a modulus
mi is represented by the number set:

lmi = {0, · · · , (mi − 1)}. (1)

Let M =
∏3

i=1 mi = 2n(2n − 1)(2n + 1). Szabo et
al. [1] proved that if 0 ≤ A < M , then the integer
A has an one-to-one correspondence to its RNS rep-
resentation. The integer A is uniquely represented by
a 3-tuple (a1, a2, a3), where

ai = |A|mi = A− [A/mi]×mi, (2)

for i = 1, 2, 3. In the above equation, [A/mi] is the
integer part, and each residue digit is defined as the
remainder of least magnitude when A is divided by
mi.
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Table 1: Rules for adding binary SD numbers
abs(xi) = abs(yi) abs(xi) 6= abs(yi)

(xi + yi)× (xi−1 + yi−1) ≤ 0 (xi + yi)× (xi−1 + yi−1) > 0
wi 0 xi + yi −(xi + yi)
ci (xi + yi)/2 0 xi + yi

2.2 the Extended Dynamic Range for SD
Number Representation

A residue number X can be represented by an n-digit
radix-two SD number representation as follows:

X = xn−12n−1 + xn−22n−2 + · · ·+ x0, (3)

where xi ∈ {−1, 0, 1}, and X can be denoted as
(xn−1, xn−2, · · · , x0)SD. To simplify the manipula-
tion of the modular operation in an SD number rep-
resentation, we apply the definition that each residue
digit has the following redundant residue number set:

Lmi = {−(2n − 1), · · · , 0, · · · , (mi − 1),
· · · , (2n − 1)}, (4)

Thus, X must be in Lmi when it is expressed in an
n-digit SD number representation. Obviously,

−X = −(xn−1, xn−2, · · · , x0)SD

= (−xn−1,−xn−2, · · · ,−x0)SD

is also in Lmi .

Definition 1 Let Y be an SD number representation
and m be a modulus. Then y = 〈Y 〉m is defined as
an integer in Lm. When |Y |m 6= 0, y has one of two
possible values given by equations

y = 〈Y 〉m = |Y |m, (5)

and

y = 〈Y 〉m = |Y |m − sign(|Y |m)×m, (6)

where

sign(s) =

{
−1 s < 0
1 s ≥ 0

.

When |Y |m = 0 and m = 2n − 1, there are three
possible values for y, that is, −m, 0 and m. How-
ever, it is difficult to know if Y is in lm, because of the
redundancy of the SD number representation.

The numbers as the intermediate results calcu-
lated in Lm are used for fast residue arithmetic. If
necessary for a final result, they can be converted into
lm.

2.3 Modulo m Signed-Digit Adder

A novel residue arithmetic hardware algorithm using
a radix-two SD number representation has been pro-
posed to implement the modulo m multiplication for
the symmetric RNS [10, 11]. It is the key to increase
the computation speed of such modular addition.

Figure 1 illustrates a circuit diagram of an n-
digit modulo m Signed-Digit adder (MSDA) with n
SD full adders (SDFAs), where m = 2n + µ and
µ ∈ {−1, 0, 1}. One SDFA consists of ADD1 and
ADD2. ADD1 generates the intermediate sum and the
intermediate carry, and ADD2 sums the low interme-
diate carry and the intermediate sum. Let ci and wi be
the carry and the intermediate sum of the ith digit po-
sition, respectively. Their values are determinated by
Table 1 with respect to the values of xi, yi, xi−1, yi−1.
Thus, the modulo m addition can be performed in par-
allel without the carry propagation. We use⊗ to mean
an 1-by-1 multiplier.
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Figure 1: Modulo m Signed-Digit adder (MSDA)

3 Chinese Remainder Theorem

A number X can be generally represented as X =
(xn, xn−1, · · · , x1) in an RNS, where 0 ≤ xi < mi.
To convert (xn, xn−1, · · · , x1) into the binary num-
ber representation XB , the following CRT is generally
used.

XB =

∣∣∣∣∣
n∑

i=1

(
m̂i

∣∣∣∣
1

m̂i

∣∣∣∣
mi

xi

)∣∣∣∣∣
M

(7)
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where
m̂i = M

mi

M =
∏n

i=1 mi dynamic range
{m1,m2, · · · ,mn} relatively prime integers∣∣∣∣ 1
m̂i

∣∣∣∣
mi

multiplicative inverse of m̂i

3.1 CRT for Moduli (2n−1, 2n, 2n +1) Using
Redundant Binary Number Architecture

The proposed conversion is shown in Fig.2, and the
procedure is performed in the following two stages.
In the first stage, the main conversion is based on the
SD number architecture and we have no carry propa-
gation during addition. In the second stage, for one-
to-one correspondence, we convert numbers in Lm to
those in lm and the output is in the binary number rep-
resentation.
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Figure 2: Residue-to-binary number conversions

Let m1 = 2n,m2 = 2n − 1,m3 = 2n + 1. Then
m̂1 = 22n − 1, m̂2 = 22n + 2n, m̂3 = 22n − 2n. We
use the modulo operation 〈·〉m to deal with | · |m, and
then the multiplicative inverse is shown as follows:

〈 1
m̂1

〉
m1

= −1, (8)
〈 1

m̂2

〉
m2

= 2n−1, (9)
〈 1

m̂3

〉
m3

= 2n−1 + 1. (10)

The proofs of (8), (9), (10) are based on the fact
that 〈m̂i〈 1

m̂i
〉〉mi = 1. Let x1, x2, x3 be residue num-

bers for modulo 2n, 2n − 1, 2n + 1. Because a binary

representation is one in the redundant number repre-
sentation, we don’t need any computation for the con-
version from the binary number representation to the
redundant one. Thus the calculation of CRT can be
written as

XSD = 〈A + B + C〉M (11)

where M =
∏3

i=1 mi and

A = (−22n + 1)〈x1〉2n , (12)
B = (22n + 2n)〈2n−1x2〉2n−1, (13)
C = (22n − 2n)〈〈2n−1x3〉2n+1 + x3〉2n+1.

(14)

where XSD means that X is in the SD number rep-
resentation. Then the conversion result is XSD =
k322n + k22n + k1. Let TA = 〈x1〉2n = x1, TB =
〈2n−1x2〉2n−1, and TC = 〈〈2n−1x3〉2n+1 + x3〉2n+1.
X can be written as

XSD =
〈

(−22n + 1)TA + (22n + 2n)TB

+(22n − 2n)TC

〉

2n(2n+1)(2n−1)

=
〈
− 2n(2n)(TA) + 2n(2n + 1)TB

+2n(2n − 1)TC

〉

2n(2n+1)(2n−1)
+ TA

= 2n
〈
〈(−2nTA) + (2n + 1)TB〉22n−1

+(2n − 1)TC

〉

22n−1
+ TA

= 2n
〈
〈E + F 〉22n−1 + GA

〉

22n−1
+ TA

(15)

where E = −2nTA, F = (2n + 1)TB and GA =
(2n − 1)TC. Let GB = 〈E + F 〉22n−1. It is clear
that k1 = TA = x1 since 0 ≤ x1 < 2n. The calcula-
tion of XSD can be considered as how to compute the
magnitude of 22n and 2n, k3 and k2.

Conversion algorithm A
Input: x1, x2, x3 (binary numbers)
Output: k1, k2, k3 (SD numbers)

(1) Procedure for k1

k1 = x1;

(2) Procedure for k2 and k3

(2A) TA = x1;
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TB = 〈2n−1x2〉2n−1;
TC1 = 〈2n−1x3〉2n+1;

(2B) E = 2n(−TA);
F = (2n + 1)TB

(2C) TC = 〈TC1 + x3〉2n+1;
GB = 〈E + F 〉22n−1;

(2D) GA = (2n − 1)TC;
(2E) k32n + k2 = 〈GB + GA〉22n−1;

ut
In (2A), TB and TC1 are evaluated by perform-

ing the end-around-carry shift of (n − 1) digit posi-
tions to left. −TA is directly derived by changing the
signs of nonzero digits. The word length of E,F and
GA are twice of n. In (2C), one 2n-digit and one n-
digit SD additions are performed in parallel. In (2E),
k32n +k2 is evaluated by one 2n-digit MSDA. There-
fore, the above algorithm needs two 2n-digit MSDAs,
one n-digit MSDA. Note that the conversion is based
on SD number system and the legitimate range of
XSD is [−(M − 1), (M − 1)] by the definition of the
SD number for RNS.

3.2 Converting XSD into binary number rep-
resentation XB

Then we convert XSD into lm for one-to-one corre-
spondence. Because k1 = x1 ≥ 0, to convert XSD

into lm can be consider as to convert k322n + k22n

into lm. We use the property of mod 2n−1 arithmetic,
and this leads to that we can carry out the conversion
through a 22n − 1 parallel prefix adder.

Definition 2 Let H and J be two integers in the bi-
nary number representation. If H + J = 2n− 1, then
J is 1’s complement of H .

Property 1 Let R = (rn−1, · · · , r0) and ri ∈
{0,−1}. Let T = (tn−1, · · · , t0). If R+(2n−1) = T ,
then ti ∈ {0, 1}.

From Property 1, we know T ≥ 0. It is enough
to use the binary number representation to represent
T . We use Q = (qn−1, · · · , q0) to represent R by the
following steps: (1)If ri = −1 then qi = 1. (2)If
ri = 0 then qi = 0. Since J = (2n − 1) + (−H),
then we can calculate T by using 1’s complement rep-
resentation. For example; when R = (0,−1, 0,−1),
then Q = (0, 1, 0, 1). By Definition 2, T is 1’s com-
plement of Q, and then T = (1, 0, 1, 0). We know
R + (24 − 1) = T .

Let D = k32n + k2 and D+ and D− be 2n-
digit SD numbers for the positive digits and the neg-
ative digits, respectively. For example: if D =

(−1,−1,−1, 0, 1, 0), then D+ = (0, 0, 0, 0, 1, 0) and
D− = (−1,−1,−1, 0, 0, 0). Thus k32n + k2 can be
written as

D = |D+ + D−|22n−1

= |D+ + D− + (22n − 1)|22n−1

= |D+ + DA|22n−1 (16)

where DA = D− + (22n − 1) ≥ 0 and D+ ≥ 0.
Therefore, D ≥ 0. We can use 1’s complement rep-
resentation to calculate DA. Since D+ ≥ 0 and
DA ≥ 0, it is enough to use the binary number rep-
resentation to represet D+ and DA. Then, we use the
binary number representation, DP and DN , to ex-
press D+ and DA.

Conversion algorithm B
Input: k1, k2, k3 (SD numbers)
Output: b1, b2, b3 (binary numbers)
Let XB = b322n + b22n + b1,
D = (d2n−1, · · · , d0),
DP = (dp2n−1, · · · , dp0) and
DN = (dn2n−1, · · · , dn0).

Procedure for b1

b1 = k1;

Procedure for converting D = k32n + k2 into lm

(1) for i = 0 to (2n− 1);
If di = 0, then dpi = 0 and dni = 1;
else if di = 1 then dpi = 1 and dni = 1;
else dpi = 0 and dni = 0;

(2) b32n + b2 = |DP + DN |22n−1;

ut
Consider how to calculate |DP + DN |22n−1.

A good idea to perform modulo 2n − 1 adder has
been proposed [13] by using Kogge-Stone tree struc-
ture which uses the associative operator ′o′ defined in
Brent et al. [12] to implement the carry computation
and the method is referred to as parallel prefix adder.
Brent et al. [12] defined Gi and Pi as “block carry
generate” and “block carry propagate”, respectively.
They have shown that it suffices to compute all the
Gis, Pis for computing carry propagation. To calcu-
late |DP +DN |22n−1, the above algorithm needs one
modulo (22n − 1) parallel prefix adder.
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4 Hardware Realization and Perfor-
mance Evaluation

4.1 Hardware Realization

In hardware implementation, an SD digit x is encoded
as a 2-bit binary code defined as x = [xs, xa], where
xs is the sign and xa is the absolute value. This de-
mands more hardware resources, but it also reallo-
cates space, which effects the overall speed. We use a
hardware description language, VHDL, to design the
residue arithmetic circuits for the implementation of
the proposed converters. Then, we performed a simu-
lation under the conditions of 1-µm CMOS gate array
technology.

The proposed converter based on conversion al-
gorithms A and B, whose main blocks consist of three
MSDAs and one modulo (22n − 1) prefix adder, is
shown in Fig.3. Block E is used to get 2n(−x1).
Block F is used to get (2n + 1)TB where TB =
〈2n−1x2〉2n−1. As mentioned before, the TC1 and
TB are designed as the shift-left operation. GA com-
bines 2nTC and (−TC). The division block is used
to convert Lm to lm, which divides itself to two pos-
itive numbers including ’0’. The modulo (22n − 1)
prefix adder[13] is used to sum the two positive num-
bers, such that b32n + b2 is [0, 22n − 2].
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Figure 3: Architecture of the proposed converter

4.2 Comparison between the Proposed
Method and Other Methods

The Andraos-Ahmad algorithm [5], which introduces
compact forms of multiplicative inverses to simplify
CRT, is an efficient technique. The algorithm uses
four adders, two of which operate in parallel, to con-
vert the moduli (2n + 1, 2n, 2n − 1) residue number
into their binary equivalent. Recently, Piestrak [6]
has suggested a simplification of the Andraos-Ahmad
technique: the value of −r1 modulo 22n−1 can be
easily obtained by the manipulation of r1. Piestrak
proposed two methods. The first method, referred
to as the cost-effective (CE) version, uses two 2n-bit
carry save adders (CSAs) and one 2n carry propaga-
tion adder (CPA) with an end-around-carry to calcu-
late A + B + C − r1 of Andraos et al.[5]. The sec-
ond method, which is referred to as the high-speed
(HS) version, uses two 2n-bit CSAs and two parallel
2n-bit CPAs followed by a multiplexer. The CE con-
verter needs (4n + 1) full adder (FA) and the delay
time is (2tFA + 2tCPA(2n)). The HS converter needs
(6n + 1)FA and 2n-bit multiplexer (MUX), and the
delay time is (2tFA + tCPA(2n) + tMUX).

As mentioned before, mod 2n+1 requires (n+1)
bits to represent 2n + 1 states. Hiasat et al.[8] pro-
posed using mod 2n−1 − 1 to instead of mod 2n + 1.
The main advantage is that arithmetic mod 2n−1 − 1
is more efficient than that mod 2n + 1, especially in
the end-around-carry is positive number. Wang et al.
[9] improved the method of Hiasat et al. [8], and
saved one stage of modulo subtraction for comput-
ing Y in Hiasat et al. [8]. The converter [9] needs
(7n− 3)FA and (3n-7) half adder (HA), and the delay
time is (3n + 2)tFA.

Now we evaluate our proposed converters. Our
aim is to enable high-speed conversion, so draw-
backs in terms of area are not problems. The main
process in Fig.2 is on MSDA and modulo 22n−1 par-
allel prefix adder. The area of MSDA is the propor-
tion of n and the delay is independent of n [11, 10].
The area of modulo 22n − 1 parallel prefix adder
[13] is 6n log 2n + 8n additions and the delay is
O(2 log 2n + 3). Therefore, our conversion (Fig.3)
is faster than that by Piestrak [6] when n is large.

The area comparison and delay time comparison
are shown in Table 2. In Table 2, because our convert-
ers are based on the SD number representation, we use
two bits to express one-digit SD number. This leads
to that we need more hardware than the binary con-
verters. Compared to 16-digit Piestrak’s high-speed
converters [6], our method is fast and the computation
time is shorten by 34%. The proposed converter based
on parallel adders (MSDA, parallel prefix adder) is
very fast when n ≥ 16.
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Table 2: Performance of the CRT number converters

n CE[6] HS[6] Wang[9] Fig.3
area delay area delay area delay area delay

(gate) (ns) (gate) (ns) (gate) (ns) (gate) (ns)
4 240 20.06 345 15.25 222 24.44 399 21.22
8 480 32.38 689 22.56 468 40.52 849 22.92
16 960 57.02 1377 37.19 1011 94.24 1707 24.6

The moduli (2n − 1, 2n, 2n−1 − 1) have more
beneficial than the three-moduli (2n − 1, 2n, 2n + 1)
in RNS, because the end-around-carry adder of mod-
ulo 2n−1 − 1 operation is very simply. However, in
the RNS-to-Binary conversion, the CRT based on the
moduli (2n − 1, 2n, 2n−1 − 1) is more complex than
that based on moduli (2n − 1, 2n, 2n + 1). In fact, the
Table 2 shows the computation time of [9] is longer
than others.

5 Conclusion

The CRT algorithm based on MSDA and parallel pre-
fix adder has been proposed. The proposed converter
has been demonstrated throughout the paper using
examples and analysis. The simulations show that
the proposed schemes are high-speed architectures.
Therefore, the conversion scheme will have less com-
putation time than binary converters.
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