
Using UML to develop Knowledge-based System for
Adaptive Scheduling

WEIDA WANG1, HE XU2, WENJIAN LIU1

1. School of Machatronics Engineering
Harbin Institute of Technology

92 Xidazhi Street, Nangang District, Harbin, Heilongjiang, 150001
PEOPLE'S REPUBLIC OF CHINA

 wangweida_cn@hotmail.com
2. School of Mechanic and Electric Engineering

Harbin Engineering University
145 Nantong Street, Nangang District, Harbin, Heilongjiang, 150001,

 PEOPLE'S REPUBLIC OF CHINA
 railway_dragon@163.com

Abstract: - It is one of the most important issues that constructing better Knowledge-Based System (KBS) to
fulfill an efficient adaptive scheduling to complex manufacturing system. A method for developing and
documenting the KBS for adaptive scheduling, using the Unified Modeling Language (UML) is presented . It
employed UML to describe the system analysis, system design and system implementation of KBS, so various
views were built up to explore the static structure and dynamic behavior of KBS. This method alleviates the
highly dependent on domain knowledge experts. The quality and efficiency of the KBS are improved. Finally a
case is given to validate the feasibility and reliability of the proposed approach.

Key-Words: - Adaptive scheduling; KBS; UML

1 Introduction
The adaptive scheduling is a good production
scheduling approach. It can identify the current state
of manufacturing system and then deicide on the
appropriate dispatching rules to be used [1]. It is a
distinctive feature that great ability to withstand
constant disruption and maintain the system running
effectively in the adaptive scheduling.

The knowledge-based system (KBS) for adaptive
scheduling, which is an important bridge between the
domain expert or the automatic knowledge
acquisition technology and the scheduler, is the
foundation of an adaptive scheduling system. For a
concrete problem proposed by the scheduler, KBS
will refer to its knowledge base that contains the
knowledge generated by the expert or the acquisition
technology, obtain the suitable solution. The
knowledge can map the production state into the
appropriate dispatching rule.

The problem of developing a KBS well is one of
the most frequent problems that knowledge engineers
face [2, 3]. When KBS are developed by rapid
prototyping that is most popular approach currently,
good design relies on the knowledge engineer’s
programming skills, and on his ability to devise,
remember, and dynamically update a design
specification. It is possible for the system to get out

of control so that even its author can not understand
why apparently small changes have large effects on
the overall system.

The Unified Modeling Language (UML) is the
defacto standard for object modelling in the software
engineering area. It can provide a powerful
framework and notation for modeling business and
objects.

Hakansson [4] suggested using UML to represent
the expert’s domain knowledge. Chung and Pak [5]
utilized UML diagrams to develop a
knowledge-based business system for a small
financial institute.

As UML is rarely adopted in developing KBS of
the production and manufacturing area, the study on
applying UML approach under this context in this
paper would be of added value. This article presents a
methodology that use UML to create the model
documentation of the KBS for adaptive scheduling. It
contains applying UML diagrams to describe the
system analysis, design and implementation of KBS.

The rest of this paper is organized as follows. A
brief review about UML is given in section 2. The
proposed method is introduced in detail in section 3 .
A case applying the proposed method is presented in
section 4. Conclusions are given in section 5.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 57

mailto:wangweida_cn@hotmail.com

2 A Brief Review of UML
UML is a general-purpose visual language for
developing models depicting various view of a
system that can be used as a blueprint to develop and
implement the software applications. It is used to
visualize, specify, construct, and document the
artifacts of a system [6]. UML can present the static
structure and the dynamic behavior of a system. The
static structure defines the kinds of objects important
to a system and to its implementation, as well as the
relationships among the objects. The static views are
composed of use case diagram, class diagram,
component diagram and deployment diagram. The
dynamic behavior defines the history of objects over
time and the communications among objects to
accomplish goals. The dynamic views are made up of
state chart diagram, activity diagram, sequence
diagram and collaboration diagram.

3 Proposed Method

3.1 System Analysis
There is no need for one use case diagram to capture
everything about a system. A well-structured use
case diagram is focus in communicating one aspect
of a system. It contains only those use cases and
actors (classes representing external agents) that are
essential for understanding that aspect. It must
provide that details consistent with its level of
abstraction.

Fig. 1 The use case diagram of KBS

As shown in Fig.1, use cases under this context
could be divided into three parts namely knowledge

representation, knowledge acquisition and simple
management. The role and responsibility of the
scheduler, the scheduling knowledge acquisition
algorithm and the system administrator on the KBS
can be illustrated clearly. The scheduler is
responsible for daily dispatching tasks in the shop
floor. It should be the one that research for solution in
the KBS. It is the knowledge user. The acquisition
algorithm, using the machine learning technology,
generates the knowledge that is represented in the
form of IF-THEN. It is the knowledge provider. The
system administrator is in charge of the KBS.

The scheduler is association with only use cases in
the knowledge representation. This part contains five
use cases, including “Indicate the scheduling
objective”, “Indicate the production state”, “Indicate
the system attributes”, “Match the manufacturing
pattern” and “Obtain the dispatching rule”.

The case “Obtain the dispatching rule” uses
another case “Match the manufacturing pattern”,
which also needs to use the case “Indicate the system
attributes” to work out the rule.

The acquisition algorithm is association with only
use cases in the knowledge acquisition. There are five
cases in the acquisition. They are “Add new
scheduling objective”, “Add new production state”,
“Add new system attribute”, “Add new
manufacturing pattern” and “Add new dispatching
rules”.

There are related by the “extend” relationship
rather than the “include” between cases in the
representation and those in the acquisition. Because
the latter are optionally useful for the former only.
The latter are useful when KBS has a request for a
new scheduling objective, new production state, new
system attribute, new manufacturing pattern or new
dispatching rule.

There are two cases around the administrator.
They are “Query and View the knowledge” and
“View the system state”.

Activity diagrams are used to model the dynamic
aspect of the system. It is essentially a flow chart
showing flow of control from activity to activity.
These diagrams commonly contain activity states,
action states, transitions along with notes and
constraints. Fig.2 describes the workflow of KBS.

The scheduler should obtain the suitable rule in
reasonable time, so KBS needs to define the
boundary of the production state by capturing
scheduling objectives. The state domain contains
related production states and corresponding system
attributes and their value ranges. KBS can obtain the
acceptable rule based on the scheduling knowledge.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 58

In order for the scheduling knowledge acquisition
algorithm to effectively transfer its knowledge, KBS
has to capture the problematic production state
without the suitable solution, make training examples
and request the acquisition algorithm to correlate the
objective, the problematic production state and the
rule.

Fig. 2 The activity diagram of the scheduler and the scheduling
knowledge acquisition algorithm

3.2 System Design
Class diagrams are the most common found in
modeling object-oriented systems and show a set of
classes, interfaces and collaborations and their
relationships. Classes are populated with attributes
and methods. Attributes represent the model inputs
and methods present the functions needed for
calculations or data manipulation. Relationship
between classes are represented by lines and
described by labels, arrowheads and notation. As
shown in Fig.3, the KBS contains four main entity
classes, including class SchedulingObjectives, class
ProductionStates, class DispatchingRules and class
SystemAttributes.

Attributes of each class rather than operations are
given in the diagram because the former are more
important for the decision-making. The first decision
is to determine the scheduling objective that should
be satisfied. Then the next decision is to identify the
current problematic state, which is described by a
conjunction of system attributes. Finally a suitable
choice would be found from the rule list according to
the objective and state mentioned above.

The relationship between class
SchedulingObjectives and class ProductionStates is a
composition and not an aggregation. The aggregation
represents a “while/part” relationship. A composition
is a stronger form of aggregation. With a composition,
the parts live and lie with the whole and can not be

transferred. Obviously if an objective does not exist,
its corresponding production state will not exist. That
is, a production state does not exist independently
without an objective.

Fig. 3 The class diagram of KBS.

The relationship between class ProductionStates
and class SystemAttributes is an association with
multiplicity. In the KBS, a production state is
represented by a conjunction of a set of system
attribute. In other words, one state may have many
attributes, and one attribute may relate to many
states.

Class DispatchingRules is used to describe the
properties of relationship between the two classes
aforementioned. It is an association class.

Sequence diagrams show the interaction of a set of
objects and their relationships by the messages
dispatched among them. It emphasizes the time
ordering of messages. A good way to model the
dynamic aspects of the system is by building up the
storyboards of scenarios including the interactions of
certain important and interesting objects and
messages that may be dispatched among them.

The sequence diagram shows objects arranged
along the X-axis from left to right and messages
ordered in creasing time, along Y-axis from top to
bottom. They commonly contain objects, links and
messages along with notes and constraints. It also has
an object lifeline, a vertical dashed line, which
represents the existence of an object over a period of
time.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 59

Fig.4 contains of objects that are reacted from the
previous class diagram. They are represented on the
horizontal axis at the top of the diagram. All the
objects are linked by the association instances as per
their sequence of participation in the process. The
objects send call message and invoke a method to
start an action.

Fig. 4 The sequence diagram of KBS

The state chart diagram is used to model the dynamic
aspects of the system and mostly to model the
behavior of reactive objects. A reactive object
continuously changes its state during its lifetime as a
response to the events dispatched from outside its
context. These diagrams maybe attached to classes
and use cases. These diagrams will be used whenever
following the change of state of an object in more
important than following the flow of activities.

As an example, the KBS for adaptive scheduling is
chosen to trace its states through its lifetime after
initiation. Fig.5 illustrates the state changes during
figuring out the suitable rule in the KBS. It starts with
the initial state, and various events in the information
process continuously change the state of KBS. These
different states have been clearly shown in the
diagram.

Fig. 5 The state chart diagram of KBS

3.3 System Implementation
A component diagram can show dependences of
various sorts among such components. The
component which arrow is leaves is said to depend on
the component to which it goes. The dependency is
shown by a clashed arrow between components.
Stereotypes may be used to define the type of
dependency. The component which the arrow leaves
is said to depend on the component to which it goes.
As shown in Fig.6, the KBS is divided into four parts.
They are KbsSupp, AppsPackage, ResPackage and
KbsSupp.db.

Fig. 6 The component diagram of KBS

The manufacturing pattern and the interfaces of the
KBS are stored in KbsSupp. AppsPackage is a
package that offers many built-in functions for
common usages of KBS. Based on the scheduler’s or
the algorithm’s request. The AppsPackage would
obtain patterns and interfaces information from
KbsSupp to perform the required tasks. AppsPackage
also needs ResPackage’s support. The latter provide
for the former some basic functions, such as access
the database.

KbsSupp.db is a back-end database that used for
storing the configurations, variables and rules. The
scheduler will query the KbsSupp.db via
AppsPackage when it does an online dispatching task.
If there is a sutiable rule in KbsSupp.db,
AppsPackage will directly deliver it to the scheduler.
If no acceptable rule exists, the scheduling
knowledge acquisition algorithm will learn the
training cases, generate new knowledge and correlate
the scheduling objectives, the current problematic
production state and dispatching rule at the request of
AppsPackage. Then AppsPackage submit the
resolved rule to the scheduler. The new knowledge
will be updated into KbsSupp.db if the rule satisfies
the scheduler. Otherwise this knowledge will be
rejected and a new request of AppsPackage will be
repeated for the acquisition algorithm’s help.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 60

The deployment diagram shows what runs where. As
depicted in Fig.7, only Monitor.exe, ResClient.dll,
KbsSupp.dll, AppsServer.dll and ResServer.dll are
needed in the client PC. The design-time components,
such as KbsSupp, AppsPackage, ResPackage and
KbsSupp.db, are not necessary. In other words, users
do not need to install the expert system tools package
and copy the related program source/database to the
target PC during deployment.

Fig. 7 The deployment diagram of KBS

Monitor.exe supply well graphical user interfaces
for the system administrator’s querying and viewing
system. It needs ResClient.dll to start the program.
Many application programming interfaces (API) are
encapsulated in AppsServer.dll. During execution, it
obtains the pattern and basic interfaces information
from the KbsSupp.dll and calls other functions from
ResServer.dll. The scheduler and the acquisition
algorithm can directly call APIs in AppsServer.dll to
realize the complex operation.

There is a main difference between the component
diagram and the deployment diagram. The former do
not show instances of components, merely the
dependencies which apply between all components
of one type and all components of another. Instances
are shown in the latter.

4 Application
To confirm the feasibility and reliability of our
propositions, the KBS for adaptive scheduling
(AS-KBS), which is a package of adaptive
scheduling system (AS-SCHED) for the workshop in
a spacecraft company, is developed. The workshop is
considered as a manufacturing environment that
produces a low-volume/high-variety of discrete jobs.

AS-KBS is developed in Visual C++. The
developed AS-KBS package can be linked with other
applications in C++ language via Visual C++. The
package is integrated with other packages in
AS-SCHED using the “Loose Coupling” integration
methodology [7], in which individual intelligent

system components communicate with each other
using the eXtensible Makeup Language (XML) file.

The colored part in Fig.8 is the position of
AS-KBS in the entire system. The main modules that
belong to AppServer.dll or AppsSupp.dll in KBS are
shown in the part.

Fig. 8 The architecture of AS-SCHED

AS-SCHED has been applied in a jobbing shop of
the spacecraft company. AS-KBS provides a smart
service for other packages of AS-SCHED according
to their resolutions. AS-KBS has perfect performance
in practice. The one of user interfaces of AS-KBS is
shown in Fig.9.

Notes:
SdPT: The standard deviation of the total processing time of candidate

jobs;
MaPT: The maximum total processing time of candidate jobs;
MeRT: The mean remaining processing time of candidate jobs;
MeUM: The mean utilization of machines.

Fig. 9 User Interface: Knowledge-Based System Console

5 Conclusions
A successful KBS for supporting an adaptive
scheduling system would facilitate real time decision
making, be robust to various to production
requirements. This work introduces an approach that
UML is utilized to model the KBS. The proposed
method makes the heavily dependent on the domain
knowledge experts alleviated. Experts, system

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 61

designers, system developer and system
administrator can effectively communicate in a
unified way and articulates their thoughts. So the
quality and efficiency in developing the KBS can
improve greatly. The KBS that based on the proposed
approach has been implemented, tested and validated
in the spacecraft manufacturing company.

Acknowledgements
This work is partially supported by the COSTIND
(Commission of Science Technology and Industry
for National Defense) Research Project, China, under
Contract 20030119.

The author gratefully acknowledges the
contributions of the KBS Working Group. Its
members have supplied significant amounts of labor
in the developing AS-KBS, and without their hard
work, AS-KBS could have never been developed as
fully as it existed today.

References:
[1] S. C. Park, N. Raman, M. J. Shaw, Adaptive

scheduling in dynamic flexible manufacturing
systems: a dynamic rule selection approach,
IEEE Transactions on Robotics and Automation.
Vol.13, No.4, 1997, pp 486-502.

[2] K. S. Metaxiotios, D. Askounis, J. Psarras, Expert
systems in production planning and scheduling:
A state-of-the-art survey, Journal of Intelligent
Manufacturing, Vol.13, 2002, pp 253-260.

[3] H. Aytug, M. A. Lawley, K. McKay, S. Mohan, R.
Uzsoy, Executing production schedules in the
face of uncertainties: A review and some future
directions, European Journal of Operational
Research, Vol.161, 2005, pp 86-110.

[4] A Hakansson, UML as an approach to modeling
knowledge in rule-based systems, In
Proceedings of ES 2001, the Twenty-first SGAI
International Conference on Knowledge Based
Systems and Applied Artificial Intelligent,
2001,pp 187-200.

[5] W. W. C. Chung, J. J .F. Pak, A case study: using
UML to develop a knowledge-based system for
supporting business in a small financial institute,
International Journal of Computer Integrated
Manufacturing, Vol. 19, No.1, 2006, pp59-68.

[6] James. Rumbaugh, Ivar. Jacobson, Grady. Booch,
The United Modeling Language Reference
Manual, Addison-Wesley, Reading, Mass, 1999.

[7] L. R. Medsker, Hybrid intelligent systems,
Kluwer, Academic Publishers, Boston, MA,
1995.

Proceedings of the 2007 WSEAS International Conference on Computer Engineering and Applications, Gold Coast, Australia, January 17-19, 2007 62

