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Abstract: - This work uses the integral method to study the heat and mass transfer by mixed convection from 
vertical plates with constant wall temperature and concentration in porous media saturated with an electrically 
conducting fluid in the presence of a transverse magnetic field. The approximate integral solutions are found to 
be in reasonable agreement with the similarity solutions. Results are plotted for the local Nusselt number, the 
local Sherwood number, and the ratio of the thermal boundary layer thickness to the concentration boundary 
layer thickness. Increasing the buoyancy parameter tends to increase the local Nusselt number and the local 
Sherwood number, while increasing the magnetic parameter decreases the local Nusselt number and the local 
Sherwood number.  
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1   Introduction 
Many researchers have studied the flows of heat and 
mass transfer by natural convection or by mixed 
convection of Newtonian fluids in porous media 
because of their importance in geophysical and 
geothermal applications, such as the surface mass 
transfer on bed rock generated by chemical reaction, 
the underground disposal of nuclear wastes where the 
failure of canisters may cause the spread of 
radioactive materials, and the spreading of chemicals 
in saturated soil.  

For natural convection heat and mass transfer, 
Khan and Zebib [1] studied the double-diffusive 
instability of the double boundary-layer structure 
near a vertical surface in temperature and 
concentration stratified porous media. Bejan and 
Khair [2] studied the natural convective flows near a 
vertical surface driven by temperature and 
concentration gradients in fluid saturated porous 
media. Lai and Kulacki [3] have examined the natural 
convection boundary layer flow along a vertical 
surface with constant heat and mass flux including 
the effect of wall injection. Nakayama and Hossain 
[4], and Singh and Queeny [5] employed the integral 
method to obtain the analytic solution of couple heat 
and mass transfer due to buoyancy along a vertical 
surface in fluid saturated porous media with constant 
wall temperature and concentration. Cheng [6] 
studied the influence of a magnetic field on the 
coupled heat and mass transfer by natural convection 

from vertical surfaces with constant wall temperature 
and concentration by the integral method.  

For mixed convection heat and mass transfer, Lai 
[7] studied the coupled heat and mass transfer by 
mixed convection from a vertical plate in a saturated 
porous medium. Yih [8] examined the influence of 
transpiration on coupled heat and mass transfer in 
mixed convection over a vertical plate embedded in a 
saturated porous medium.  

 The flows of electrically conducting fluids over 
surfaces in the presence of a transverse magnetic 
field are of much importance because of various 
geophysical and industrial applications [6, 9-10]. 
Aldoss et al. [9] studied the mixed convection from 
vertical surfaces in a porous medium under the effect 
of a magnetic field. Chamkha [10] studied the 
hydromagnetic flow and heat transfer of a 
heat-generating fluid over a surface embedded in a 
porous medium.  

Motivated by the works mentioned above, the 
present work uses the integral method to study the 
problem of laminar boundary layer heat and mass 
transfer by mixed convection from a vertical surface 
with constant wall temperature and concentration in 
porous media saturated with an electrically 
conducting fluid under the influence of a transverse 
magnetic field. The results obtained in the present 
work are compared with the similarity solutions 
obtained by previous studies to check the accuracy of 
the integral method. With the closed form analytical 
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solution, the practicing engineer can easily and 
quickly obtain the heat and mass transfer rates by 
hydromagnetic mixed convection from a vertical 
surface in saturated porous media. 

 
 

2   Problem Formulation 
Consider the mixed convection heat and mass 
transfer along a vertical impermeable plate with 
constant wall temperature and concentration 
embedded in a porous medium saturated with an 
electrically conducting fluid subject to a uniform 
transverse magnetic field. The flow is laminar, 
steady-state and two-dimensional, and the properties 
of the fluid are assumed to be constant and isotropic. 
The fluid and the porous medium are in local 
thermodynamic equilibrium. The applied transverse 
magnetic field is assumed to be uniform, and the 
magnetic Reynolds number is so small that induced 
magnetic field can be neglected. Furthermore, the 
external electric field is assumed to be zero and the 
electric field due to polarization of charges is 
neglected.  

The x-coordinate is measured from the leading 
edge of the vertical plate and y-coordinate is 
measured normal to the plate. The surface is 
maintained at a temperature wT  different from the 
porous medium temperature ∞T  sufficiently far from 
the surface of the plate. Moreover, the concentration 
of a certain constituent in the solution that saturates 
the porous medium varies from wC  on the fluid side 
of the vertical surface to ∞C  sufficiently far from the 
surface of the plate.  

With introducing the boundary layer and 
Boussinesq approximations, the equations governing 
the conservation of mass, momentum, energy and 
constituent for Darcy flow along a vertical surface in 
a porous medium saturated with an electrically 
conducting fluid can be written as follows:  
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The boundary conditions are defined as 
follows: 

0=y ; wTT = , wCC = , 0=v                              (5)                    
∞→y ; ∞→CC , ∞→TT , ∞→ uu                     (6)                    

In the above equations, u  and v  are the 
volume-averaged velocity components, T  and C  
are temperature and concentration, respectively. 
Properties µ , ρ , σ , and 0B  are the solution 
viscosity, density, electrical conductivity, and 
magnetic induction, respectively. K  and ε  are the 
permeability and the porosity of the porous medium, 
respectively. tβ  and cβ  are the coefficient of 
thermal expansion and the coefficient of 
concentration expansion, respectively. The thermal 
diffusivity α  is defined as the thermal conductivity 
of the fluid saturated porous medium, divided by the 
specific heat capacity of the fluid alone. The mass 
diffusivity D  is the diffusivity of the constituent of 
interest measured through the fluid-saturated porous 
medium. The uniform velocity of he external flow is 
denoted by ∞u . 

Integrating Eqs. (3) and (4) about y  from 0  to 
∞  and using Eq. (1), we then get the following 
integral equations: 
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To satisfy the boundary conditions, Eqs. (5) and 
(6),  the profiles of dimensionless temperature and 
concentration is assumed to be the following 
functions: 
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It should be noted that the temperature and 
concentration profile functions defined in Eqs. (9) 
and (10) also satisfy the compatibility conditions and 
the smoothness conditions: 
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Eq. (11) is obtained by evaluating Eqs. (3) and (4) 

at 0=y . Using Eqs. (2), (9) and (10), and integrating 
Eqs. (7) and (8) about y  from 0  to ∞ ,  we can get 
two ordinary differential equations for the thermal 
boundary-layer thickness tδ  and the concentration 
boundary-layer thickness cδ . The solutions of two 
ordinary differential equations can be given by 

Pe
x*

tt δδ =                                                          (13) 

Pe
x*

cc δδ =                                                         (14) 

In Eqs. (13)-(14), αxuPe ∞=  is the Peclet number 
and write the unknowns *

tδ  and *
cδ  as  

( ) 21212 M*
t +=δ  
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( )[ ] 21212 LeM*
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In Eqs. (15)-(16), )()( αµρβ xTTgKRa wt ∞−=  
is the Darcy-modified Rayleigh number ct δδ∆ =  
is used to represent the ratio of the boundary layer 
thickness, DLe α=  is the Lewis number, 

[ ])()( ∞∞ −−= TTCCN wtwc ββ  is the buoyancy 
ratio, ( ) ( )εµσ 2

0
2 BKM =  is the square of the 

magnetic parameter, and the function ( )∆F  can be 
expressed as  
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Rates of heat and mass transfer from the wall to the 
fluid are represented by the local Nusselt number and 
the local Sherwood number given by  

PeNu *
tδ

2
=                                                   (19) 

PeSh
c
*

2
δ

=                                                    (20) 

Table 1. Comparison of the local Nusselt number for 
0=M , 1=Le  and 0=N   

 
 PeNu  PeRa

Exact  
(a) 

Present 
 (b) 

Relative 
error 

aab )( −

0 0.5642 0.5477 -0.02925

1 0.7206 0.6947 -0.03594

10 1.5163 1.4579 -0.03851

30 2.4981 2.4034 -0.03790

50 3.1909 3.0703 -0.03779

100 4.4763 4.3074 -0.03773

500 9.9555 9.5692 -0.03880
 

where k/hxNu =  and D/xhSh m= , where h  and 

mh  are the local heat transfer coefficient and the 
local mass transfer coefficient, respectively. 
 
 
3   Problem Solution 
In order to verify the accuracy of our present integral 
mrethod, we compare the present results for the 
Nusselt number with those obtained by Hsieh et al. 
[11] for mixed convection heat transfer along a 
vertical surface with constant wall temperature 
embedded in a fluid-saturated porous medium 
( 0=N , 1=Le , and 0=M ), as shown in Table 1. It 
is clearly seen from the table that the present integral 
results are in acceptable agreement with the 
similarity solutions reported by Hsieh et al. [11].  The 
absolute value of maximum percentage error found in 
Table 1 is about 3.88 %.  

Fig. 1 depicts the variation of the local Nusselt 
number PeNu  with the buoyancy parameter 

PeRa  for various values of the magnetic parameter 
M . The results show the local Nusselt number 
dereases with a increase in the magnetic parameter 
and increases with higher values of the buoyancy 
parameter. The reason for such a behavior is that 
incresing the buoyancy parameter implies increasing 
the buoyancy force, accelerating the flow and thus 
increasing the heat transfer between the fluid and the 
wall. Enhancing the magnetic field tends to decrease 
the fluid flow velocity and thus decreases the local 
Nusselt number.  
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Fig. 1. Variation of local Nusselt number with 
buoyancy parameter for various values of magnetic 
parameter. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  Variation of local Sherwood number with 
buoyancy parameter for various values of magnetic 
parameter. 

Fig. 2 plots the local Sherwood number PeSh  
as a function of the buoyancy parameter PeRa  for 
various values of the magnetic parameter M . It is 
clearly shown that the applied magnetic field tends to 
decrease the local Sherwood number. Moreover, 
increasing the buoyancy parameter increases the 
local Sherwood number. That is because increasing 
the buoyancy parameter tends to increase the 
buoyancy force, accelerating the flow and thus 
increasing the mass transfer between the fluid and the 
wall. The decrease in the fluid flow velocity due to 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Effect of buoyancy ratio on the local Nusselt 
number.  

 

 

 
 
 
 
 

 

 

 

 

Fig. 4. Effect of buoyancy ratio on the local 
Sherwood number. 

 
applied magnetic field results in the decrease of the 
local Sherwood number.  

The influence of the buoyancy ratio N  on the 
local Nusselt number PeNu  is depicted in Fig. 3. 
It is clearly shown that the local Nusselt number 
increases as the buoyancy ratio N  is increased. 
Increasing the buoyancy ratio N  leads to an increase 
in the buoyancy force, accelerating the flow and thus 
increasing the heat transfer between the surface and 
the fluid.  
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Fig. 5. Effect of buoyancy ratio on the ratio of the 
thermal boundary layer thickness to the 
concentration boundary layer thickness. 

 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
  

 
Fig. 6. Effects of Lewis number on the local Nusselt 
number. 

 
Fig. 4 shows the influence of the buoyancy ratio 

N  on the local Sherwood number PeSh . The 
local Sherwood number PeSh  tends to increase 
as the buoyancy ratio N  is increased. That is 
because an increase in the buoyancy ratio tends to 
accelerate the flow, thinning the concentration 
boundary layer and thus enhancing the mass transfer 
near the wall.  

The effect of the buoyancy ratio N  on the ratio 
of the thermal boundary layer thickness to the 
concentration boundary layer thickness ∆  is  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Effects of Lewis number on the local 
Sherwood number. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8. Effect of Lewis number on the ratio of the 
thermal boundary layer thickness to the 
concentration boundary layer thickness. 

 
depicted in Fig. 5. It is clearly shown in this figure 
that an increase in the buoyancy ratio tends to 
increase the ratio of the thermal boundary layer 
thickness to the concentration boundary layer 
thickness.  

Fig. 6 shows the effect of the Lewis number Le  
on the local Nusselt number PeNu . Comparing 
the three cases in Fig. 6, we can conclude that as the 
Lewis number Le  is increased, the local Nusselt 
number PeNu  tends to decrease for aiding flow 
( 0>N ). The influence of the Lewis number Le  on 
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the local Sherwood number PeSh  is shown in Fig. 
7. The results show that the local Sherwood number 
tends to increase as the Lewis number is increased.  

Fig. 8 depicts the effect of the Lewis number Le  
on the ratio of the thermal boundary layer thickness 
to the concentration boundary layer thickness ∆ . 
The ratio of the thermal boundary layer thickness to 
the concentration boundary layer thickness increases 
with increasing buoyancy parameter for the case of 

1>Le , and decreases with increasing buoyancy 
parameter for the case of 1<Le , while it is found to 
be independent of the buoyancy ratio for the case of 

1=Le . 
 
 
4   Conclusion 
An integral approach has been used to study the 
coupled heat and mass transfer by mixed convection 
from a vertical plate with constant wall temperature 
and concentration embedded in porous media 
saturated with an electrically conducting fluid in the 
presence of a transverse magnetic field. The 
approximate solutions obtained from the present 
integral method are in reasonable agreement with the 
exact similarity solutions. This work presents the 
closed-form analytic expressions with which 
engineers can easily and rapidly calculate physical 
characteristics of heat and mass transfer for any value 
of buoyancy ratios, Lewis numbers, buoyancy 
parameters, and magnetic parameters. Moreover, 
increasing the buoyancy parameters increases the 
local Nusselt number and the local Sherwood number, 
while an increase in the magnetic parameter tends to 
decrease the local Nusselt number and the local 
Sherwood number. The ratio of the thermal boundary 
layer thickness to the concentration boundary layer 
thickness increases with increasing buoyancy 
parameter for the case of 1>Le , and decreases with 
increasing buoyancy parameter for the case of 1<Le , 
while it is found to be independent of the buoyancy 
ratio for the case of 1=Le . 
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