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Abstract

In this paper a numerical algorithm is described for
solving the boundary value problem associated
with  axisymmetric, inviscid, incompressible,
rotational (and irrotational) flow in order to obtain
duct wall shapes from prescribed wall velocity
distributions. The governing equations are
formulated in terms of the stream function w(X,y)
and the function ¢(x,y) as independent variables
where for irrotational flow ¢(x,y) can be
recognized as the velocity potential function, for
rotational flow ¢(x,y) ceases being the velocity
potential function but does remain orthogonal to
the stream lines. A numerical method based on
finite differences on a uniform mesh is employed.
The technique described is capable of tackling the
so-called inverse problem where the velocity wall
distributions are prescribed from which the duct
wall shape is calculated, as well as the direct
problem where the velocity distribution on the duct
walls are calculated from prescribed duct wall
shapes. The two different cases as outlined in this
paper are in fact boundary value problems with
Neumann and Dirichlet boundary conditions
respectively. Even though both approaches are
discussed, only numerical results for the case of the
Dirichlet boundary conditions are given. A
downstream condition is prescribed such that
cylindrical flow, that is flow which is independent
of the axial coordinate, exists.

1. Introduction

Designers of ducts require numerical techniques
for calculating wall shapes from a prescribed
velocity distribution. The objective of the
prescribed velocity is typically to avoid boundary
layer separation. At inlet a velocity is prescribed to
allow for a vorticity to be present calculated from

@ =V AV where the A denotes the usual cross

product of vectors, o is the vorticity vector and v
the velocity vector respectively.

The objective of the present paper is to describe a
numerical algorithm for solving the boundary
value problem that arises when the independent
variables are ¢ and y where ¢ may be identified as
the velocity potential function (for irrotational flow
only), for flow with vorticity ¢ ceases being the
velocity potential function but does remain
orthogonal to y which may be identified as the
stream function. The dependent variable vy, is the
radial coordinate and x the axial coordinate. The
numerical technique is based on the finite
difference scheme on a uniform mesh.

2. The Design Plane

Defining_ o )
wW=u-Iv=ge " ;4 Z=X+Iy

then using the Cauchy-Riemann equations the
identitax\/N
==20-io,)
oz 2
is easily verified where
ou ov
n=—_+_—
ox oy
and
_ov au

W =—_—=
“ox oy

In application to steady plane flow, with rectilinear
coordinates X, y and velocity components u, v in
the x, y directions respectively g is the flow speed,
4 is the flow direction measured from the x axis,
®, is the component of vorticity normal to the
plane and 7 is the rate of expansion or dilation. If 7
is zero everywhere apart from at isolated
singularities e.g. point sources the velocity
components can be derived from a stream function
v level lines of which coincide with the
streamlines. If w, is zero everywhere except at
point vortices then the velocity components can
also be derived from a velocity potential ¢, level
lines of which are orthogonal to the streamlines.

3. The First Auxiliary Flow.
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Consider a flow of complex conjugate velocity w®
where

a_‘// e’ig
on

w® = (3.1)

with  real and a—l/l its derivative in a direction
n

(19+%) from the x-axis. This auxiliary flow and

the actual flow (of complex conjugate velocity w)

clearly share the direction ¢ and takingaa—l//, the
S

derivative in the direction 9, to vanish over either
flow field then

6—l'//=cosl9 6—l'//+sin19 Gl (3.2

0S OX
=0

while
8_;// = —singa—w + cosSa—W
on OX

=—cosec198—w

OX
= secsa—l//

and substituting in definition (3.1)
wo= ¥ o7
oy OX
so that
1) 2

W _ 50V

0z 0101
Certain observations can be made on this auxiliary
flow characterized so far, by equation (3.2) and
(3.3). From equation (3.3) it has zero rate of
expansion and a vorticity given by

w® = - Vi
Level lines of y(x,y) define its stream line pattern
and also that of the actual flow, but the distribution
of y across the stream has not yet been allocated.

(3.3)

4. The Second Auxiliary Flow

Next consider a flow of complex conjugate
velocity w®®, where

W = 0P g-is
0s

with ¢(x,y) real. This flow also shares direction and

streamline pattern with the actual flow but in order

to establish a family of curves orthogonal to the

(4.1)

. L op . .
streamlines, this time 8_(0 is taken to vanish over
n

the flow field, i.e.,

a—(p:-sin 38_¢ + Cos 38—¢:0

on OX
so that
8_(p = c0538—¢+sin 38—(/)
0s OX oy
8_(0 = secga—(p
0S OX
= cosecsa—(p
oy

and substituting in definition (4.1)
wo = 02 ;00

ox oy

() 2
= aW_ =2 6 (/i
0z 0202

This second auxiliary flow therefore has zero
vorticity but a rate of expansion given by

7?=Vip

level lines of ¢(x,y) define a family of curves
orthogonal to the streamline pattern common to
both auxiliary flows and the actual flow but the

distribution of ¢ along the stream has yet to be
allocated.

5. Intrinsic Flow Equations

The differential operator identity
0 .0 . g i
ds  on oz
is easily verified and when applied to the function

log(w) there follows after some simple
manipulation

] 1 )
iy = L (r-iw,) 6.1
0s on q

Applying equation (5.1) to the actual flow and each
subsidiary flow gives

. . 1 .
(2 +i-2) (9@ -19)= = (7~ i0,) (62
s on q
(419 ) og(¥) +18) = 19V (53)
os  on

(£+ii)(log(®)+i3):-¢\72(p (5.4)
os on
o¢

where @ and ¥ represent the reciprocals of Y
S

and 68_1// respectively. The system of implicit flow
n



equations comprises the real and imaginary parts of
equation (5.2), the real part of equation (5.3) and
the imaginary part of (5.4)

& Coat@y+ 20 =7 ©5)
£ toot@)- 7 =- (56
2 (log(¥) - 22 -0 6)
%(Iog(db)) ' % 0 (5.8)

6. The Fundamental Design Plane
Equations

Eliminating ¢ between equations (5.5) and (5.6)
and again between equations (5.7) and (5.8) gives

aﬁ(log(qw)) 1
s q

aiuog(qq))) 1
n q

substituting A = g% and B = q@&. The last pair of
equations can be written as

ai(log(A)) -8 6.1)
@ q

ai(log(B» - e (6.2
4 q

whilst equations equation (5.7) and (5.8) similarly
become

A 0 q 094

——(log(—)) =—— )
Ba(D(OQ(A)) oy (6.3)
and

B 9 ooy = 99

aay 1090 =7 (64)

eliminating 4 between equations (6.3) and (6.4)
gives

04| Bop \A)| ow| Aoy “\B

(6.5)

Regarding temporarily 7, o, and q as known
functions of ¢ and y the system (6.1) and (6.2) is
quasi-linear hyperbolic with characteristics parallel
to the ¢ and w axes which maps the physical flow
field into an infinite strip in the (g,y) plane.
Bearing in mind the freedom available in the
stream wise variation of ¢ and the cross stream
variation of y, suitable values of A can be
prescribed along one ¢ characteristic and those of
B can be prescribed along one y characteristic.
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Regarding similarly A and B as known functions of
¢ and y equation (6.5) is linear elliptic and
although boundary conditions for it will depend on
the particular application, the Dirichlet choice
involves the prescription of g over the flow field.
Numerical coupling of the two schemes yields the
solution in the Design Plane.

7. Physical Coordinates

From elementary geometric considerations and
definitions given previously
dz =e'’(ds +idn)
ei&

=?(Bd¢+ iAdy) (7.1)
Thus qds=Bd¢e and qdn=Ady. So that when 9, q,
A and B are known in the (¢, ) plane the physical
coordinates x and y can be calculated. Alternatives
to equations (6.3), (6.4) and (6.5) which are more
convenient in some applications can be obtained
using the values of

0z 0z

—and —

op oy

given by equation (7.1), so that

ﬁ =Ec058, ﬂ :Esin 9,

op q op q

ﬁ = —ésin 9, ﬂ = écos 9.

oy q oy q

so that

ox_Boy (7.2)
op Ady

and

x_ Ay 73
oy B op

hence eliminating x in (7.2) and (7.3) yields
O(AN), 2By o qa

op\ B op oy \ Ady

Equation (7.4) may be used to replace equation

(6.5) in the design system previously described and
for use in equations (6.1) and (6.2)

1 1(a 2+L(ﬂ)z
q9° Aoy B2\ 0p

this time completion of the physical coordinates is
provided from equations (7.2) and (7.3) by

Aody B op
The Dirichlet boundary condition involves the

prescription of y on the boundaries of the design
plane, whilst the Neumann the prescription of
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ﬂor
dp

is being considered). The technique can easily be
extended to cope with the so-called Cauchy and
Robin boundary conditions. An analytic treatment
of equation (7.4) can be found in Pavlika (4),
Cousins (1) and Klier (3).

oy
0

—— (depending on which bounding surface
74

8. The Numerical Algorithm in the
Design Plane

Rewriting the partial differential equation that y
satisfies as:

i(aﬂj +£(bﬂj =C
o6\ "0p) o\ ow

where a=a(y,4,y), b=o(y.4y) and c= c(y. ),
where a, b and c are function of y, ¢ and . For
problems posed in the design plane c¢=0, the a and
b will vary depending on whether the flow field is
irrotational or swirl free etc. Writing in finite
difference form using central differences (with
c=0) gives:

a(aayj _ 1 |:(ai+1,j + )V, _4ai,jyi,j:|
op\ 04),; 2(Ag)* |+ @iy +a ;)Y

and

a(bayJ _ 1 |:(bi,j+1+bi,j)yi,j+l —4b; i,
oy oy ), 2(Ay)? |+ (b g +b; )Y

Thus at the point (i4¢ ,jAw) (to be denoted by (i,j)

from now on in this paper), the equation is
represented by a computational molecule as:

+N Vi
WiiVie; —CiiVii B Via; = R
+SiiViia

Where the N, S, E and W and R may be identified
as

W, =(Ap)* (3 +aiy;)

. =Ay)(a.,,; +a;)

N;,; = (A(D)Z(bi,j-l +b; ;)

S.; = (4p) (b1 +bij)

C.; =4(Ap)’a ; +(Ap)°h; ;)
R, = Z(A(P)Z(Al//)zci,j

(8.1)

i

9. The Difference Equations

Equation (8.1) applies for i=1to M; j=1to N on a
uniform mesh as described in Pavlika (4), with
special consideration at j=1 and j=N, so that with
Dirichlet boundary conditions, say for j=N

|

+Ni\ Yina
Wi Yian —CinYin +EinYian=Ri;-
Si,N yi,N+l
with Yina prescribed as the Dirichlet data for

0 <i <M. For j=2to N-1

+N; Vi
Wi,jyi—l,j _Ci,jyi,j + Ei,jyi+1,j = Ri,j
+S,iViia
and for j=1
WiiVias —CiaVia + EinVina=Ris = Ni1Yig
+Si1Yiz

similarly y; o prescribed as the Dirichlet data for
0<i<M..

10. Vector form of the Difference
Equations

The above equations can be written more
conveniently in matrix-vector form as:

_Wi,l 0 0 i yi—l,l ]
0 Wi,2 O yi—l,Z
0 Wi’3 ) . R
i Win || Yian |
- Ci,l Si,l 0 T yi,l ]
Ni, -C, S, O Yio
Ni,s _Ci,3 +
L _Ci,N__yi,N_
_Ell O 0 T yi+l,l ]
O Ei,2 0 yi+l,2
0 Ei'3 =
i Ein || Yieon |
Ri, — Ni,lyi,O
Ri,2
=R say. (10.1)
_Ri,N o Si,N yi,N+1_
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11. Direct Solution of the Difference
Equations

The matrix-vector equation (equation (10.1)) can
be written as
WOYED 4 Aly®) 4 gy +1) — RO (11.1)
With diagonal matrices W® and E? and tridiagonal
matrix A” all of order (NxN), and column vectors
Y and RY of order N. To solve the vector
recurrence relation a speculation is made that the
Y@ vector can be related linearly to the Y® vector
as follows:
(D = giy® 4 k® (11.2)
where the B” and the K are at present unknown
matrices and column vectors respectively.
Substituting (11.2) into (11.1) gives
(WOBD 4+ ADYYD = RO _ @) KW _ pOy(i+1)
— vy = _ (W(T)B(i) +_A(")‘1 EOy(+)

T4 (WOB®D + AD)L (RO VY0 K
but
Y(i) — B(i+1) Y(i+1) + K(i+l)
Thus equating coefficients implies
B(+D = _ (W(i)B(i) + A(i))-l g® (11.3)
and
KED = (WOB® 4+ AM)1 (RO _ Wi K
For i=0 this gives

YO =B® YW + KO (11.4)

To determine the K, if the first iterate BY = 0
then

KO = yO

The matrix and vector sequences are now defined
by equations (11.3) and (11.4) for i=1 to M. The
Y® vectors are now calculated starting from right to
left (as YM*Y is known) using

X(M) — B(M+l)l(M+l) + K(M+l)

The diagonal matrices W® and E” have elements
W(I) = Wi'j and E(I) = Ei'j

The tridiagonal matrix A has entries

A“-=-Ci,j j= 1toN

Aj,j+1 = Si,j ) Aj,+l,j = Ni,j+l; j =1toN-1

12. The Boundary Conditions

Initially the Neumann boundary condition will be
analysed. In this case the vector of unknown y
values is extended to include the j=0 row (for the
top boundary) and j=N+1 for the bottom boundary,
(as shown in Pavlika (5)). The difference scheme is
now applied over this extended set i.e. the scheme
is centered on the point j=0, (and j=N+1 for the
bottom boundary). Considering for the moment
only having a Neumann condition on the top
boundary, the centering the scheme on j=0 will
involve the value of y at j=-1, this term is
expressed in terms of the value of y at j=1 using
the known normal derivative, such that:

Yia—VYia - oy

20p (%
so at the mesh point (i,0) (i=1,2,....M) the finite
difference scheme gives
Wi oYicno =CioVYio + EioYimo=Rio = NigVi

+ Si,O yi,l
Applying the boundary condition gives
Wi,o yi—l,O o Ci,o yi,O + Ei,O yi+l,0
+(Sio + Nig)Via

J = known exp ression
i,0

=Rio — ZA‘/’Ni,o(aﬁ]
¥ Jio

Using

¥\ _ et 1)
(wl,o_ Aivo(qﬁo Biz’o (aq)ji‘oJ

The normal derivative is now known in terms of
the prescribed speed which in this case is along the
top boundary. The matrix-vector equations become

_Wi,O 0 0 _yi—l,O
0 Wi,l 0 yi—l,l
0 W, 0 ) R
L Wi,N__yi—l,N A
-Cio (Sip+Niyp) 0 - . “Yi,o ]
Ni,l _Ci,l Si,l 0 ' yi,l
N| 2 _Ci,z
L _Ci,N__yl N
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_EI,O O O . . __yi+1,0_
0 Ei,l 0 yi+1,1
0 Ei,z =

L Ei,N__yi+1,N_

Ri,o - ZAWNLO(Q]

GW i,0
Ri,l
Ri,N _Si,N yi,N+l

Similar analysis can be performed if the bottom
boundary is to have a Neumann boundary
condition as described in Pavlika (4). The
technique can also be applied to the case of Robin
boundary conditions.

13. Axisymmetric Flow in the
Absence of Body Forces

Here numerical solutions to inviscid axisymmetric
flow with constant vorticity and a swirl velocity
will be derived. The axial velocity component uy(y)
at inlet will be chosen to be of the form uy(y)
=ay+/[, where « and £ are constants chosen such
that uy(y1)=u; and uy(y2)=u, where y; represents the
inner radius and y, the outer radius at inlet. The
swirl velocity uy(y), will be of the form

u,(y)= ky+lwhere the k and | are constants
y

with ky representing solid body rotation and I/y the
so-called free vortex term respectively.

14. The flow equations in the physical
plane(y,a,x).

Adopting cylindrical polar coordinates with vy
being the radial coordinate, « the circumferential
and x the axial coordinate, defining wvelocity
components u, , U, and ux with corresponding
vorticity components @y , @,,, a in the direction
of increasing y, a and x respectively, then the
equation of motion with unit density becomes:

by =-V.p (14.2)

Dt -

D . . — .

Whereals the material derivative. Equation

(14.1) can be written using well known vector
identities as:

ou ou ou, u? op

L+, —+u, - =T
ot OX oy 'y oy
ou, au, ou, u,u,
+Uu, +U, - =0
ot OX oy y
au, +Uu, au, +U, au, :_a_p (14.2)
ot OX oy OX
Furthermore

ou
—+UuVu=-V.
o T

can be written (once again using an appropriate
vector identity as)

%-F(Q/\g):—Z(B-l-%qz).Thus

for steady flow Crocco’s form of the equation of
motion is obtained, i.e.
(_u A®)=VH (14.3)

where H is the total head defined by H = p +%q2.

Calculating the cross product on the left hand side
of equation 14.3, gives

oH

— =u,0, -umo,
oy

0=u,m0, -u o,
oH

(14.4)

In addition for axisymmetric flow the vorticity

vector @ becomes
ou
Q:z/\g: _au“ y+ _y_ai o+
oXx | = | ox oy
{EM} X (14.5)
y oy

The equation of continuity becomes
0 o(yu
(yux) + (y Y) — O
OX oy

15. The Design Plane counterparts

In order to compute numerical solutions in the
design plane, expressions are required for the terms

A, Bandw, , thus
u. ou
a_x+_y:_l(u g+uyj

V=

ox oy y\ " ox
d
= —qg(log(y))
or
n=-L (tog(y)).

B dp



but
2

_9° 9
=73 6(/)(lOQ(A))

oy __¥q

f , — =
) )
arbitrary function f(y) represents the freedom in
the cross stream distribution of y and choosing
f(w) to be unity everywhere  can be identified as
the usual Stokes stream function given by

81// _yuy!al/l =Yyu,
OX oy
Equation (14.5), (circumferential component) gives
u u

0oy, 20 |, 20,)

OX oy
Referring to the meridional plane figure 3.1, it may
be deduced that

oy

yZQ£

thus Ay = that is The

OX |
uxzqg,u

0
=—(yu,)=0
as(y o)
oyu, =C(y)

where q = % In terms of C(y) the vorticity

vector (equation (14.5)) becomes

10oC ou, ou,
O=VAU={——— Y+ti———a+t
yox| = |[ox oy

{180}
—— X
yoy)

= oy + o, o+ axX, by definition.
An expression for w, is required as this appears in
the expression for B, so using the radial component
of equation (14.4) gives

» _U_x[lﬁj_i@
‘ yoy) u, oy
using the Stokes’ stream function this becomes
_C@O(de_de
y (dy dy

which is the required expression to be used in
calculation of B according to definition (6.2). If far
upstream the flow is assumed to be cylindrical so
that all quantities are independent of x, then with
unit density the equation of motion and the Stokes’
Stream function give

a

giving
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2
u
cup)-

X

yd(uz
2dy

wa:cwq(dcj
y \dy

With u (y)=ay+/ and ua(y):ky+l as
y

previously defined. Once :—H has been calculated
74

upstream it takes this value throughout the (¢,v)
since as is self evident the expression is
independent of ¢@. This last expression for w, is
required in the calculation of B and numerical
coupling with equation (7.4) gives the numerical
solution in the design plane.

16. Downstream Conditions

Downstream a cylindrical flow condition as
discussed below will be prescribed. Defining the
pressure function H(w) and the function C(y) as

H() == (u? +u?)+2 and Cp) =
2 p

for cylindrical flow radial equilibrium (from
equation (14.2) radial component gives

1op_u

pdy 'y
Integrating gives

1 u’
;(p_ py—inner) = '[ _ady =

y—inner y

[ C’(y)

y—inner

dy
Which gives H(y) as
py —inner

H(W)——(U +UZ) +

N J (V/)

—inner

dy

Now I (l//)d =—=

y—inner

1/c? (c? 1 1 dC?
e SR R e
y—inner y—inner

Therefore
Hp) = Sul +

idC2
Suppose u,, =u,,(w)and u,, =u,,(y), where

the subscript 1 denotes upstream conditions, then
U, =u.,()and u,, =u,,(w) are required as

jc d(1/y?)

y—inner

py—inner
—+t (U )y inner

dy
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functions of i, where the subscript 2 similarly
denoting downstream conditions, so that

1 p inner 1
U, =H(y)-—"—(u?,)
o, 2

inner

2
2
1 iz dc (16.1)
2 veo Y1 dy
d 1
and J‘ _l//dw = E(yg - y;,inner)

y/:O X,2
Furthermore C(y) = y,u,, = Y,U,,.and equation

(16.1) now gives

1 uiz :iuil pl,inner _ p2,inner
2 2 p p
1

2 ((ua l)lnner (uozz,Z)inner)

or

uf,z xl+ K+ _[ (—z—izjd(cz) (16.2)
w=0 1 yZ
where

K — 2( pl,inner _ p2,inner ) + (uiyl)
p p

inner (ua,z)inner

= y22,inner +2 j 3_1//

y/:O X,2
with uy, in this case given by (16.2).

and y2 (16.3)

17. Calculation procedure

The calculation of the downstream radii y,(y)
follow from equation (16.3) with u,, given by
equation (16.2), which can be written as

=g(yw)+ K, where

g(w) = U, + J- [y__y_]d((j(;/)

In order to calculate the (n+1)" iterate it is known
that:

(17.1)

i(yz )=2 o __dy
8K 2,outer o 6K /—g ((//) n K
--[" dy

w=0 3 (n)
(ux,Z)

but
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n+1
(i( 2 j(n) _ (yzz,outer )( ) - (y22,outer)(n)
y2 outer - K (n+1) K (n)

(17.2)
from which as can be seen from equation (17.2) the
K® must be calculated iteratively with K©=0,
Once the K™Y has been calculated it is introduced
into equation (17.1), giving rise to a new

uZ,)™which in tun gives a new
(y:,)™ from equation (16.3) and the process

repeated until
satisfied.

some convergence criteria is

18. Prescription of Wall Geometries.

In this paper the Dirichlet boundary conditions will
be prescribed on the wall boundaries so that it is
the radii values, y that are given as a function of ¢
on the boundaries. The function chosen to give ay
distribution is based on the hyperbolic tangent,
choosing y(g)=Ctanh(a¢g+b)+k where C, a, b and k
are constants, applying the conditions that y=y, at
¢=0 and y=y4 at ¢=@ taking a@+b=3(arbitrary)
and b=-3, so that tanh(a@+b) ~1 and tanh(b) ~-1,
then it follows that

y(p) = (%} tanh(aq +b) + (%j

(18.1)
replacing ¢, by x in equation (18.1) gives a y(x)
distribution. The inner radius is prescribed to be
equal to unity in this paper (arbitrary). The
geometries produced are shown in figures 21.1,
21.2 and 21.3 respectively.

19. Conclusions

As shown, geometries have been produced subject
to given upstream and downstream conditions with
prescribed Dirichlet boundary conditions. In this
case vorticity at inlet has been specified by
defining the axial velocity to be of the form uy(y)
=ay+p, and the swirl velocity of the form

u,(y)= ky+l, where the k and | are constants,
y

defining the so-called free and forced vortex whirl
respectively. The downstream conditions where
such that: cylindrical flow was present, Dirichlet
boundary conditions were prescribed, however the
case with  Neumann conditions can be
accommodated using the algorithm, in addition so
can the case with Robin boundary condition.
Further examples of the algorithm with a
combination of boundary condition is given in
Pavlika (5). It was found that at most eight
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iterations were required to achieve an acceptable
level of convergence, with the technique
accelerated using Aitken’s Method.
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Figure 21.1. The geometry and speed distribution (along the top boundary) produced given a Swirl velocity

u, =0.5y +£ and a velocity at inlet given by u,(y) =ay+2,
y
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Figure 21.2. The geometry and speed distribution (along the top boundary) produced given a Swirl velocity

u, =0.3y +% and an axial velocity at inlet given by ux(y) =ay+5,
y
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Figure 21.3. The geometry and speed distribution (along the top boundary) produced given a Swirl velocity

u, = % and an axial velocity at inlet given by u,(y) =ay+2,
y
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