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Abstract   The objective of the present paper is to describe a 
numerical algorithm for solving the boundary 
value problem that arises when the independent 
variables are φ and ψ where φ may be identified as 
the velocity potential function (for irrotational flow 
only), for flow with vorticity φ ceases being the 
velocity potential function but does remain 
orthogonal to ψ which may be identified as the 
stream function. The dependent variable y, is the 
radial coordinate and x the axial coordinate. The 
numerical technique is based on the finite 
difference scheme on a uniform mesh.  

  
In this paper a numerical algorithm is described for 
solving the boundary value problem associated 
with axisymmetric, inviscid, incompressible, 
rotational (and irrotational) flow in order to obtain 
duct wall shapes from prescribed wall velocity 
distributions. The governing equations are 
formulated in terms of the stream function ψ(x,y) 
and the function φ(x,y) as independent variables 
where for irrotational flow φ(x,y)  can be 
recognized as the velocity potential function, for 
rotational flow φ(x,y) ceases being the velocity 
potential function but does remain orthogonal to 
the stream lines. A numerical method based on 
finite differences on a uniform mesh is employed. 
The technique described is capable of tackling the 
so-called inverse problem where the velocity wall 
distributions are prescribed from which the duct 
wall shape is calculated, as well as the direct 
problem where the velocity distribution on the duct 
walls are calculated from  prescribed duct wall 
shapes. The two different cases as outlined in this 
paper are in fact boundary value problems with 
Neumann and Dirichlet boundary conditions 
respectively. Even though both approaches are 
discussed, only numerical results for the case of the 
Dirichlet boundary conditions are given. A 
downstream condition is prescribed such that 
cylindrical flow, that is flow which is independent 
of the axial coordinate, exists.  

2. The Design Plane 
Defining  
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In application to steady plane flow, with rectilinear 
coordinates x, y and velocity components u, v in 
the x, y directions respectively q is the flow speed, 
ϑ  is the flow direction measured from the x axis, 
ω

 
 

1. Introduction 
α is the component of vorticity normal to the 

plane and η is the rate of expansion or dilation. If η 
is zero everywhere apart from at isolated 
singularities e.g. point sources the velocity 
components can be derived from a stream function 
ψ level lines of which coincide with the 
streamlines. If ω

 
Designers of ducts require numerical techniques 
for calculating wall shapes from a prescribed 
velocity distribution. The objective of the 
prescribed velocity is typically to avoid boundary 
layer separation. At inlet a velocity is prescribed to 
allow for a vorticity to be present calculated from 

α is zero everywhere except at 
point vortices then the velocity components can 
also be derived from a velocity potential φ, level 
lines of which are orthogonal to the streamlines.     

v∧∇=ω  where the ∧ denotes the usual cross 
product of vectors, ω is the vorticity vector and v 
the velocity vector respectively. 3. The First Auxiliary Flow. 
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Consider a flow of complex conjugate velocity w(1) 
where  

    w(1)  = 
n∂

∂ψ ϑie−         (3.1) 

with ψ  real and 
n∂

∂ψ
 its derivative in a direction  

(ϑ +
2
π

) from the x-axis. This auxiliary flow and 

the actual flow (of complex conjugate velocity w) 

clearly share the direction ϑ  and taking
s∂

∂ψ
, the 

derivative in the direction ϑ, to vanish over either 
flow field then  
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so that  

zz
i

z
w

∂∂
∂

=
∂
∂ ψ2)1(

2    (3.3) 

Certain observations can be made on this auxiliary 
flow characterized so far, by equation (3.2) and 
(3.3). From equation (3.3) it has zero rate of 
expansion and a vorticity given by 
   w(1) = -  ψ2∇
Level lines of ψ(x,y) define its stream line pattern 
and also that of the actual flow, but the distribution 
of ψ across the stream has not yet been allocated. 
 

4. The Second Auxiliary Flow 
 
Next consider a flow of complex conjugate 
velocity w(2), where  

w(2)  = ϑϕ ie
s

−

∂
∂

   (4.1) 

with φ(x,y) real. This flow also shares direction and 
streamline pattern with the actual flow but in order 
to establish a family of curves orthogonal to the 

streamlines, this time  is taken to vanish over 

the flow field, i.e., 
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This second auxiliary flow therefore has zero 
vorticity but a rate of expansion given by 
η(2) =  ϕ2∇
level lines of φ(x,y) define a family of curves 
orthogonal to the streamline pattern common to 
both auxiliary flows and the actual flow but the 
distribution of φ along the stream has yet to be 
allocated.  

5. Intrinsic Flow Equations 
The differential operator identity  
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is easily verified and when applied to the function 
log(w) there follows after some simple 
manipulation  
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Applying equation (5.1) to the actual flow and each 
subsidiary flow gives 
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where Φ and Ψ represent the reciprocals of   

and 
n∂

∂ψ
 respectively. The system of implicit flow 
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Regarding similarly A and B as known functions of 
φ and ψ equation (6.5) is linear elliptic and 
although boundary conditions for it will depend on 
the particular application, the Dirichlet choice 
involves the prescription of q over the flow field. 
Numerical coupling of the two schemes yields the 
solution in the Design Plane.  

equations comprises the real and imaginary parts of 
equation (5.2), the real part of equation (5.3) and 
the imaginary part of (5.4) 
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7. Physical Coordinates 
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From elementary geometric considerations and 
definitions given previously  
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Thus qds=Bdϕ and qdn=Adψ. So that when ϑ, q, 
A and B are known in the (φ,ψ) plane the physical 
coordinates x and y can be calculated. Alternatives 
to equations (6.3), (6.4) and (6.5) which are more 
convenient in some applications can be obtained 
using the values of  

Eliminating ϑ between equations (5.5) and (5.6) 
and again between equations (5.7) and (5.8) gives 
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substituting A = qΨ and B = qΦ. The last pair of 
equations can be written as 

given by equation (7.1), so that  
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whilst equations equation (5.7) and (5.8) similarly 
become 
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eliminatingϑ between equations (6.3) and (6.4) 
gives 
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Regarding temporarily η, ωα and q as known 
functions of φ and ψ the system (6.1) and (6.2) is 
quasi-linear hyperbolic with characteristics parallel 
to the φ and ψ axes which maps the physical flow 
field into an infinite strip in the (φ,ψ) plane. 
Bearing in mind the freedom available in the 
stream wise variation of φ and the cross stream 
variation of ψ, suitable values of A can be 
prescribed along one φ characteristic and those of 
B can be prescribed along one ψ characteristic.  
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hence eliminating x in (7.2) and (7.3) yields 
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Equation (7.4) may be used to replace equation 
(6.5) in the design system previously described and 
for use in equations (6.1) and (6.2) 
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this time completion of the physical coordinates is 
provided from equations (7.2) and (7.3) by 
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A
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The Dirichlet boundary condition involves the 
prescription of y on the boundaries of the design 
plane, whilst the Neumann the prescription of 

Proceedings of the 4th WSEAS International Conference on Fluid Mechanics, Gold Coast, Queensland, Australia, January 17-19, 2007         32



ϕ∂
∂y

ψ∂
∂y  +  1,, −NiNi yNor (depending on which bounding surface 

is being considered). The technique can easily be 
extended to cope with the so-called Cauchy and 
Robin boundary conditions. An analytic treatment 
of equation (7.4) can be found in Pavlika (4), 
Cousins (1) and Klier (3).  

8. The Numerical Algorithm in the 
Design Plane 

Rewriting the partial differential equation that y 
satisfies as:  
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where a≡a(y,φ,ψ), b≡b(y,φ,ψ) and c≡ c(y,φ,ψ), 
where a, b and c are function of y, φ and ψ. For 
problems posed in the design plane c=0, the a and 
b will vary depending on whether the flow field is 
irrotational or swirl free etc.  Writing in finite 
difference form using central differences (with 
c≠0) gives:  
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Thus at the point (iΔφ ,jΔψ) (to be denoted by (i,j) 
from now on in this paper), the equation is 
represented by a computational molecule as:  
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9. The Difference Equations 
Equation (8.1) applies for i=1 to M; j=1 to N on a 
uniform mesh as described in Pavlika (4), with 
special consideration at j=1 and j=N, so that with 
Dirichlet boundary conditions, say for j=N 

NiNiNiNiNiNi yEyCyW ,1,,,,1, +− +− = -  jiR ,

                                                               1,, +NiNi yS
with prescribed as the Dirichlet  data for  1, +Niy
0 ≤ i ≤ M. For j=2 to N-1 
 +  1,, −jiji yN

jijijijijiji yEyCyW ,1,,,,1, +− +−  =   jiR ,

    +  1,, +jiji yS
and for j=1 

1,11,1,1,1,11, +− +− iiiiii yEyCyW =                       0,1,1, iii yNR −

                 +  2,1, ii yS
similarly yi,0 prescribed as the Dirichlet data for  
0≤ i≤ M.. 

10.  Vector form of the Difference 
Equations 

The above equations can be written more 
conveniently in matrix-vector form as: 
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11.  Direct Solution of the Difference 
Equations 

12.  The Boundary Conditions 

Initially the Neumann boundary condition will be 
analysed. In this case the vector of unknown y 
values is extended to include the j=0 row (for the 
top boundary) and j=N+1 for the bottom boundary, 
(as shown in Pavlika (5)). The difference scheme is 
now applied over this extended set i.e. the scheme 
is centered on the point j=0, (and j=N+1 for the 
bottom boundary). Considering for the moment 
only having a Neumann condition on the top 
boundary, the centering the scheme on j=0 will 
involve the value of y at j=-1, this term is 
expressed in terms of the value of y at j=1 using 
the known normal derivative, such that: 

The matrix-vector equation (equation (10.1)) can 
be written as 
W(i) (i-1) (i) (i) (i) (i+1) (i)Y  + A Y  + E Y  = R  (11.1) 
With diagonal matrices W(i) (i) and E  and tridiagonal 
matrix A(i) all of order (NxN), and column vectors 
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recurrence relation a speculation is made that the 
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as follows: 
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(i) K(i)where the B  and the  are at present unknown 
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Y  vectors are now calculated starting from right to 
left (as (M+1)Y  is known) using   

(M) (M+1)Y  = B  Y(M+1)  + K(M+1)

The diagonal matrices W(i) (i) and E  have elements The normal derivative is now known in terms of 
the prescribed speed which in this case is along the 
top boundary. The matrix-vector equations become  

W(i) (i) = Wi,j  and E  = Ei,j
The tridiagonal matrix A has entries  
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WAj,j+1 = Si,j   ,    Aj,+1,j = Ni,j+1,  j = 1 to N-1 
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can be written (once again using an appropriate 
vector identity as)  

)
2
1()( 2qpu

t
u

+∇−=∧+
∂
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Similar analysis can be performed if the bottom 
boundary is to have a Neumann boundary 
condition as described in Pavlika (4). The 
technique can also be applied to the case of Robin 
boundary conditions.    

for steady flow Crocco’s form of the equation of 
motion is obtained, i.e.  

Hu ∇=∧ )( ω     (14.3) 
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2
1 qp +where H is the total head defined by H = . 

Calculating the cross product on the left hand side 
of equation 14.3, gives  

13.   Axisymmetric Flow in the 
Absence of Body Forces 
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 Here numerical solutions to inviscid axisymmetric 
flow with constant vorticity and a swirl velocity 
will be derived. The axial velocity component u xyyx uu ωω −=0  x(y) 
at inlet will be chosen to be of the form ux(y) 
=αy+β, where α and β are constants chosen such 
that u
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x(y )=u  and u1 1 x(y )=u  where y2 2 1 represents the 

inner radius and y In addition for axisymmetric flow the vorticity 
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2 the outer radius at inlet. The 
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The equation of continuity becomes 14.  The flow equations in the physical 
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Adopting cylindrical polar coordinates with y 
being the radial coordinate, α the circumferential 
and x the axial coordinate, defining velocity 
components u

15.  The Design Plane counterparts 
In order to compute numerical solutions in the 
design plane, expressions are required for the terms 
A, B and

y , uα  and  ux  with corresponding 
vorticity components ω  , ωy α,, ωx in the direction 
of increasing y, α and x respectively, then the 
equation of motion with unit density becomes:  
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arbitrary function f(ψ) represents the freedom in 
the cross stream distribution of ψ and choosing 
f(ψ) to be unity everywhere ψ can be identified as 
the usual Stokes stream function given by 
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 has been calculated 

upstream it takes this value throughout the (φ,ψ) 
since as is self evident the expression is 
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coupling with equation (7.4) gives the numerical 
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16.  Downstream Conditions 

Referring to the meridional plane figure 3.1, it may 
be deduced that  Downstream a cylindrical flow condition as 

discussed below will be prescribed. Defining the 
pressure function H(ψ) and the function C(ψ) as  
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which is the required expression to be used in 
calculation of B according to definition (6.2). If far 
upstream the flow is assumed to be cylindrical so 
that all quantities are independent of x, then with 
unit density the equation of motion and the Stokes’ 
Stream function give  
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the subscript 1 denotes upstream conditions, then  giving  

)(2,2, ψxx uu = )(2,2, ψαα uu =and  are required as 
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repeated until some convergence criteria is 
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18.  Prescription of Wall Geometries. 
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the radii values, y that are given as a function of φ 
on the boundaries. The function chosen to give a y 
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are constants, applying the conditions that y=y
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replacing φ, by x in equation (18.1) gives a y(x) 
distribution. The inner radius is prescribed to be 
equal to unity in this paper (arbitrary).  The 
geometries produced are shown in figures 21.1, 
21.2 and 21.3 respectively.  
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with u  in this case given by (16.2). x,2
  

17.  Calculation procedure 19.  Conclusions 
The calculation of the downstream radii y2(ψ) 
follow from equation (16.3) with u

As shown, geometries have been produced subject 
to given upstream and downstream conditions with 
prescribed Dirichlet boundary conditions. In this 
case vorticity at inlet has been specified by 
defining the axial velocity to be of the form u

x,2 given by 
equation (16.2), which can be written as  
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defining the so-called free and forced vortex whirl 
respectively. The downstream conditions where 
such that: cylindrical flow was present, Dirichlet 
boundary conditions were prescribed, however the 
case with Neumann conditions can be 
accommodated using the algorithm, in addition so 
can the case with Robin boundary condition. 
Further examples of the algorithm with a 
combination of boundary condition is given in 
Pavlika (5). It was found that at most eight 

In order to calculate the (n+1)th  iterate it is known 
that:   
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iterations were required to achieve an acceptable 
level of convergence, with the technique 
accelerated using Aitken’s Method. 
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21.  Figures  
 

 
Figure 3.1. The meridional plane.  
 

 
Figure 21.1.  The geometry and speed distribution (along the top boundary) produced given a Swirl velocity 

y
yu 2.05.0 +=α  and a velocity at inlet given by  ux(y) =αy+β, 
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Figure 21.2. The geometry and speed distribution (along the top boundary) produced given a Swirl velocity 

y
yu 6.03.0 +=α  and an axial velocity at inlet given by ux(y) =αy+β, 

Proceedings of the 4th WSEAS International Conference on Fluid Mechanics, Gold Coast, Queensland, Australia, January 17-19, 2007         40



 
Figure 21.3.  The geometry and speed distribution (along the top boundary) produced given a Swirl velocity 

y
u 6.0

=α  and an axial velocity at inlet given by ux(y) =αy+β,   
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