
NP3: A New DNA Compression Algorithm

Paul Gardner-Stephen and Greg Knowles
Embedded Systems Laboratory,

School of Informatics and Engineering, Flinders University,
GPO Box 2100, Adelaide 5001, Australia

Abstract:- NP3 is a nucleotide database compression algorithm which takes advantage of the redundancy
among sequences in genomic databases. We demonstrate the effectiveness of the NP3 algorithm by com-
pressing the bodies of the UniGene [1] transcriptome database at 0.71 bits per base, while offering sequential
and random access decompression speeds peaking in excess of500,000 sequences per second. This is sig-
nificantly better than the results offered by existing algorithms[2, 3, 4, 5, 6].

Key-Words:- Data compression, Blast, DNA, UniGene, Human Genome, zip

1 Introduction

There is little doubt that genomic databases are
growing in size at a rate which exceeds that of
both Moore’s Law and the increase in hard disk
storage capacities. There is also the rising spectre
of mass sequencing systems entering production in
the future. If computer systems are swamped by
current data volumes, then such systems capable
of sequencing perhaps 108 bases per hour threaten
to drown them. However, it can be observed that
while the volume of sequencing data is increasing
exponentially, that the increase in entropy is much
closer to linear. The homology between species
being sequenced, the homology among individuals
and varieties of organisms as well as the homol-
ogy of sequences within an organism together sug-
gest that a significant proportion of the entropy pre-
sented by individual sequences is in fact common.
It therefore follows that it should be possible to
produce compression algorithms which take advan-
tage of this inter-sequence miscibility to produce
extremely compact representations. As the volume
of sequencing grows, and the redundancy increases
it is not unreasonable to envisage compression ra-
tios an order of magnitude better than the 1.6 to 1.8
bits/base of current algorithms. This is the motiva-
tion of NP3, to produce an algorithm which focuses
on harnessing the inter-sequence redundancy which
is present and will continue to grow as aggregate
database sizes continue to balloon. Variants of this

approach have been employed in the past, for exam-
ple the EMBL-ALIGN database efficiently stores
groups of sequences as multiple alignments.

The general data flow of the NP3 Algorithm
proceeds as follows: the Fasta format database is
initially parsed, separated into sequence descrip-
tion and body streams which are then handled sep-
arately. The remaining processes are elucidated
in the corresponding text below which describes
how the compressed representations of the descrip-
tion and body data are generated, collated and seg-
mented to produce an NP3 file.

Finally, as genetic databases are continually
evolving we have designed the NP3 file format to
be easy to patch, so that changes can be incorpo-
rated without the need to re-compress the whole
database.

1.1 Discovery and Indexing of Redun-
dancy in Sequence Bodies

Redundancy is discovered within and among se-
quences by searching for matching regions in a
window of sequence data spanning of the order of
several hundred sequences or kilo bases, which ever
is the lesser. This allows the discovery of redun-
dancy between sequences with substantially con-
served regions. Consider Figure 1 where three se-
quences share varying portions of a common sub-
sequence, as indicated by the striped region. In this
case sequence #2 contains a region which also oc-

Proceedings of the 3rd WSEAS International Conference on Mathematical Biology and Ecology, Gold Coast, Queensland, Australia, January 17-19, 2007 21

������
������
������
������

�����
�����
�����

�����
�����
�����

������
������
������

������
������
������

(a)

(b)

(c)

Sequence #1

Sequence #2

Sequence #3

Figure 1: Example of Chained Inter-Sequence Redundancy.
Sequence #3 has two options for sourcing the redundant matter
(the shaded section of each sequence). The source most distant
to the sequence (i.e. most proximal to the start of the database)
is always chosen in preference (Sequence #1 in this case).

curs in sequence #1, as indicated by arrow (a). Sim-
ilarly sequence #3 contains a portion of that same
region, which occurs in both sequences #1 and #2
(arrows b and c). Where such multi-way redundan-
cies occur, they are linked to the most distant se-
quence. In the example, this means that the redun-
dancies of both sequences #2 and #3 get recorded
against sequence #1. This approach of maximising
the distance to the host sequence acts to minimise
the number of hops required to eventually find the
redundant sequence fragment. This helps to keep
the decompression time to a minimum when ex-
tracting a random sequence from the database.

The recorded maximal alignment information
from the redundancy discover phase is fed into a
dynamic programming system (see Section 1.2).
There it is combined with information about how
many bits it takes to encode each redundancy type
to determine an optimal, i.e. lowest bit count, to-
ken stream to represent the sequence. Some por-
tions of a given sequence may only be recurrent in
such short fragments that using those redundancies
would be unprofitable. The dynamic programming
algorithm takes this into account and determines
which fragments to encode by reference, and which
are short enough to be preferentially encoded di-
rectly in the token stream. Directly coded sequence
is encoded three bases per byte with a two bit iden-
tifier prefix, or four bases per byte for longer spans.
Run Length Encoding (RLE) is used where possi-
ble to encode repeating residues or residue pairs
to reduce the message length. Processing of wild
cards and case change events is described later. Fi-
nally, in order to facilitate the fastest random access
decompression, references to recent sequences are
only used if they actually result in a lower bit count.
If the bit count is equal to using another encoding,
e.g. run length encoding, then that encoding will be

ACAAAAAAAAGTCGTGInput Sequence

ACAOffset Zero
ACAAAAAAAAGTCGTG

Short Direct Encoding: final offset=3 cost=8 bits

Offset One CAA

Offset Two AAAAAAAA
 AAA

Long Direct Encoding: final offset=16 cost=48 bits

Short Direct Encoding: final offset=4 cost=8 bits

Run Length Encoding: final offset=10 cost=16 bits
Short Direct Encoding: final offset=5 cost=8 bits
Redundant (Recurring) Content: final offset=11 cost=16 bits AAAAAAAAG

Figure 2: Partial Exploration of Possible Token Encodings.

used. The benefit for random access decompression
arises by reducing the frequency of inter-sequence
references which require the extra computation of
resolution.

Selecting an optimal set of encoding methods for
a broad class of inputs is not trivial. We do not
claim that we have selected an optimal encoding
scheme at this time. However, as the results will
later show, we have devised an effective encoding
scheme which provides sound compression perfor-
mance without unduly sacrificing decompression
speed. The full encoding scheme is presented in Ta-
ble 1, with various features explained in the follow-
ing paragraphs. In the table various bit positions are
marked as containing distant relative address (‘a’),
local relative offset (‘r’), number of bases encoded
(‘n’), extra address or length bits (‘x’), change of
case (‘c’), or a base represented in either 2 bit (‘bb’)
or 4 bit (‘base’) format.

1.2 Compute Optimal Encoding Method
(Tokenisation) for Each Sequence

The optimisation process determines the best set of
coding possibilities at each offset of a sequence.
The reach of these possibilities, i.e. how many
residues can be encoded at that point using the
available code, and the bit cost of doing so are
both recorded. Let’s apply this to the sequence
ACAAAAAAAAGTCGTG, as an example. Fig-
ure 2 illustrates the discovery of some of the coding
possibilities.

Once the cost of each possible transition has
been identified, we can construct a table which
gives the cumulative cost of the beginning of the
sequence (start offset= 0) to any final offset, and
use dynamic programming to determine the opti-
mal (minimal) cost from offset zero to any given
point in the sequence.

Proceedings of the 3rd WSEAS International Conference on Mathematical Biology and Ecology, Gold Coast, Queensland, Australia, January 17-19, 2007 22

Token
Number

Binary
Value

Bits Description

1 00aaaaaa
aaaaaaaa
aaaaaaaa

nnnnnnnn

32 Redundancy with address encoded as a 22 bit
value. The lower 13 bits are the offset in a
first sequence, and the upper bits encode the se-
quence number of the first sequence relative to
the current sequence. Therefore it is possible to
address up to 512 recent sequences.

2
011nnnnn
nnnnnnnn

bb×n

16+
2×n

A series of 2 bit encoded bases. This is how

long stretches of non-redundant sequence is en-

coded with an efficiency approaching that of di-

rect coding.n must be a multiple of 4.
3 100000bb 8 A single 2 bit encoded base.

4
100001rr

nnnnnnnn
16 Redundancy with address encoded as a 2 bit

value relative to the previously accessed ad-

dress. Useful for encoding regions with short

indels. This is an optimisation which is used

frequently to reduce the size of the address.

5
011nnnnn

basebase
8 A run of identical base pairs, e.g. GCGCGC...

6
10001001

basennnn
16 A run of up to 16 identical bases.

7
1000101c

0000base
16 A single 4 bit encoded base with an implied

case shift before it, and an optional case shift

after (4 bit encoding allows the use of all 16 IU-

PAC codes for nucleotide bases).

8
100011cc

basebase
16 Two 4 bit encoded bases with an implied case

shift before the first, and optionally after each

base.

9 1001bbbb 8 Two 2 bit encoded bases.

10 10100xxx 8 The extend token is placed immediately after

any other token to add three extra bits to the

length fields, e.g., a maximum range of 256 be-

comes 2048.

11
101010aa

nnnnnnnn
16 Redundancy with address encoded by the spec-

ified one of four entries from the recent address

table.

12
101011aa
rrrrrrrr

nnnnnnnn

24
Redundancy with address encoded by the spec-

ified one of four entries from the recent address

table, plus an 8 bit relative offset (rrrrrrrr).

13
1011rrrr
rrrrrrrr

nnnnnnnn

24 Redundancy with address encoded by the last

sequence address used, plus 12 bit offset.

14 11bbbbbb 8 Three 2 bit encoded bases.

Table 1: NP3 Binary Encoding Scheme for Genomic Sequence Data.

Proceedings of the 3rd WSEAS International Conference on Mathematical Biology and Ecology, Gold Coast, Queensland, Australia, January 17-19, 2007 23

1.3 NP3 Encoding Methods

The most apparent characteristic of our method is
the use of variable length, byte aligned tokens. The
decision to do this was driven by the desire for fast
decompression. While it is true that this poten-
tially makes a trade-off against compression perfor-
mance, we believe that the utility of the algorithm
is not dependent solely on that criteria. Rather, ac-
cess time is also an important characteristic of any
data storage system. In the event that a better cod-
ing method is later developed, it is relatively triv-
ial to replace the incumbent method. The NP3 file
header already records information about the en-
coding system version to allow backward compat-
ibility in that situation. Indeed the separation of
the application programming interface (API) from
the underlying storage mechanism is another of the
goals of the NP3 project. To increase the prob-
ability of local relative addressing when encod-
ing redundancies, the four most recently accessed
addresses are maintained during the tokenisation
or detokenisation of a sequence. The penultimate
three codes in Table 1 provide this functionality.
The four addresses in this list give starting points
for rendundant coding. If these points are wisely
chosen then the magnitude of any relative address
will be much less than the 21 bit address required
if the first code were used. This allows for efficient
construction of one sequence from regions obtained
from alternating sequences. These four addresses
are initialised to point to the start of, the current
sequence (to aid self-redundancy, i.e., repeats), the
last 32 bases of the previous sequence to allow triv-
ial encoding of the overlap region at the start and
end of long segmented sequences, the start of the
furthest sequence which can be addressed, and fi-
nally the start of the previous sequence, to aid effi-
ciency when encoding a series of similar sequences.
These optimisations enhance the likelihood of us-
ing the shorter relative addressing encoding meth-
ods.

Direct encoding is supported using 8 bits for up
to three bases, or 16 bits plus 2 bits per base for
longer extents. The shorter spans are used so that
all longer spans start at an offset which is multiple
of four bases from the start of the sequence. This
enables the use of simple byte copying when de-
compressing to 2 bits per base format, for sequence
search and alignment purposes. It also simplifies

the work of the optimiser by reducing the number
of coding possibilities (Section 1.2). The address of
redundancies can be encoded either in absolute or
relative form. The magnitude of relative addresses
is minimised by referring to the nearest end of the
redundancy. A list of recently referenced addresses
is maintained to further increase the likelihood of
small magnitude relative addresses. The addresses
in this list are incremented as processing advances
in an attempt to predict the address of subsequent
references. Short spans of dissimilarity in other-
wise identical spans of sequence can therefore be
compactly encoded. The need to store lengthy rel-
ative addresses is elided by the prediction of their
value. Even when the prediction is not completely
accurate it still acts to reduce the magnitude of the
relative address, and thus the number of bits re-
quired to encode it. It is acknowledged that this
is one area where using byte aligned tokens does
effect compression.

A common practice for efficiently storing wild
card characters is to use 2 bits to store each residue,
wild card or not, and then to have a table of wild
cards to superimpose on that data when it is ex-
tracted. This method, proposed by Williams et al[7]
allows wild cards to be very efficiently encoded and
relies on and exploits the relatively rarity of their
occurrence. The method presented here differs
from that approach in that these events are stored
in-line with the sequence representation. Partic-
ularly, in the case of the N wild card, it is com-
mon for long contiguous runs to occur. Such situa-
tions typically constitute the majority of wild cards
present in a database. Therefore, the storage of wild
cards has been merged with Run Length Encod-
ing (RLE). That is, to store even a single wild card
results in an RLE token. This avoids the need to
maintain a table of wild card “patches” to apply to
each sequence.

Preservation of case is not usually dealt with
in genomic compression, since it generally con-
tributes only meta-data to a sequence. However,
as it occurs rarely it should be possible to record
this information in an economical manner. Em-
pirical evidence suggests that case changes tend to
be either applied to a single residue, or last many
residues. Thus, case changes are recorded in NP3
with a two byte token. This token dictates the ini-
tial case change, and contains the next two bases.

Proceedings of the 3rd WSEAS International Conference on Mathematical Biology and Ecology, Gold Coast, Queensland, Australia, January 17-19, 2007 24

If the case change is for only one base, that fact is
included in the token. In this way the common case
of two consecutive case changes, i.e. an isolated
character appearing in reverse case, is dealt with by
a single token of 16 bits.

The optimisation framework just described
makes it relatively simple to employ any encoding
method desired, and obtain the best results that it
can afford. This is due to the decoupling of the op-
timiser from the actual bit patterns required. The
optimiser is only aware of the cost of each option at
a given point. This provides flexibility in later im-
proving the coding scheme, without requiring sig-
nificant change to the optimiser. It also makes the
NP3 approach readily adaptable to other types of
data, e.g., protein or natural languages.

2 Results

To assess the performance of NP3 versus exist-
ing compression algorithms the UniGene∗ Human
transcriptome database was compressed using each
tool†. The space used by each algiruthm to repre-
sent the sequence bodies only (as distinct from the
sequence descriptions) is presented, where possi-
ble. These results are given in Table 2. They show
that NP3 produces a significantly smaller sized re-
sult, compressing the sequence bodies at only three
quarters of a bit per base. This compares excep-
tionally well with the 2.09 bits/base achieved by
the BLAST[8] formatdb program, which is the only
format surveyed which allows for rapid random
access retrieval of individual sequences in a large
compressed database. Furthermore, the NP3 file
only compresses by 3% when subjected to bzip2,
suggesting that there are no gross inefficiencies in
the coding methods or the file format. NP3 com-
presses the database to 70% of the size achieved by
of the next most effective algorithm (bzip2), and in

∗The UniGene database is a sorted transcriptome with sub-
stantial local redundancy which is why all the algorithms here
(NP3, gzip, bzip) are able to compress it more efficiently than
they are for general DNA databases.

†The academic version of DNAcompress, while written in
Java, is packaged to run only on Windows. Windows does
not offer true CPU time accounting, so obtaining an accurate
time was not possible. The processor used in this case was a
1.77GHz AMD Athlon, which runs BLAST in almost identical
time to a 1.8GHz AMD Opteron.

NP3 Compression was performed in parallel on a Linux
cluster with 16 1.8GHz AMD Opteron processors.

Format Sequence Bodies Time
MB Bits/Base

Fasta (ASCII) 1,886 8.06 na
BLAST[8]
(formatdb)

489 2.09 6:09

DNAcompress
[5]

459 1.96 30:00

gzip 300 1.28 6:08
bzip2[9] 285 1.21 13:23
NP3 172 0.71 240

Table 2: Comparison of NP3 File Size With Other Formats for
UniGene (1.96×109 residues). NP3 produces a significantly
smaller file than any of the other methods, almost 10 times
smaller than the original Fasta file version of the database.

contrast offers random accessibility.

Retrieval speeds of individual sequences (with-
out their FASTA descriptions) peaked at over
160,000 sequences per second. For sequential ac-
cess, similar speed is obtained even if sequence
descriptions are required. NP3 offers competi-
tive compression in situations where current algo-
rithms struggle due to the lack of intra-sequence
redundancy. For example, bacteriophage database
GBPHG, taken from a recent GenBank [10] re-
lease, consists of the entire genome of a collec-
tion of bacteriophages. DNACompress was able
to compress this database only slightly, requiring
1.95 bits per base. In comparison NP3 was able
to compress this difficult data at 1.68 bits per base,
by leveraging the homology not only within each
genome, but also among them.

Where NP3 does perform relatively poorly is for
very small databases, e.g. hundreds of kilo-bases
or less, and where intra-sequence homology is the
dominant compression opportunity. The set of se-
quences considered by [5] for DNACompress and
various other DNA compression algorithms which
focus on intra-sequence homology are typical of
this. Where DNACompress is able to represent that
set of 11 sequences using 1.73 bits per base NP3 re-
quires 1.88. The authors plan to engage this intra-
sequence homology issue in a subsequent version
of the NP3 program.. We have shown it is possi-
ble to completely extract the 1.95×109 bases and
470MB of descriptions of the more than 3 million
sequences of this database in less than 40 seconds.

Proceedings of the 3rd WSEAS International Conference on Mathematical Biology and Ecology, Gold Coast, Queensland, Australia, January 17-19, 2007 25

3 Conclusions and Future Research

The results demonstrate that NP3 is capable of
producing significantly smaller lossless representa-
tions of than existing methods for highly clustered
nucleotide databases, such as UniGene, while pre-
serving easy and rapid random access to sequences.
Although compression is expensive (in time), NP3
has a parallel build mode that ensures that compres-
sion times are kept to a minimum. The results here
were obtained on a cluster of 16 1.8GHz Opteron
processors. Also the ease of updatability implies
that the full database need only be rebuilt infre-
quently.

The authors recognise that a bit aligned format
would be more efficient, but possibly at the cost
of decompression speed. More generally, gains
are possible (and quite likely) through further ex-
ploration of coding method space. In particu-
lar, the discrepancy between NP3 and DNAcom-
press is a clear indication that despite high efficacy
at harnessing inter-sequence redundancy, there is
room for improvement in the addressing of intra-
sequence redundancy. The pre-clustered UniGene
databases are especially favourable to the com-
pression techniques used here, suggesting that re-
ordering and/or clustering of similar sequences to
increase the redundancy will achieve significant
gains for non-clustered databases. This is an area
in which we are currently working.

Finally, work by Kuri-Morales et al[11] for pro-
tein databases shows that there is significant inter-
sequence homology which can be leveraged to pro-
duce compact representations, suggesting that this
should be a fruitful avenue of pursuit.

References

[1] NCBI. UniGene Transcription Database.
ftp://ftp.ncbi.nih.gov/repository/UniGene/
Homo sapiens, June 2002.

[2] Grumbach S. and Tahi F. A new challenge for
compression algorithms: genetic sequences.
J. Inform. Process. Management, vol. 30,
1994, pp. 866–875.

[3] Matsumoto T., Sadakane K., and Imai H.
Biological sequence compression algorithms.
Genome Informatics Workshop, Universal
Academy Press, 2000, pp. 43,52.

[4] Chen X., Kwong S., and Li M. A compres-
sion algorithm for DNA sequences.IEEE En-
gineering in Medicine and Biology Magazine,
vol. 20, 2001, pp. 61,66.

[5] Chen X., Li M., Ma B., and Tromp J. DNA-
Compress: fast and effective DNA sequence
compression. Bioinformatics Application
Note, Oxford University Press, vol. 18(12),
2002, pp. 1696–1698.

[6] Korodi G. and Tabus I. An Efficient Nor-
malized Maximum Likelihood Algorithm for
DNA Sequence Compression.ACM Transac-
tions on Information Systems, 2005, pp. 3–34.

[7] Williams H.E. and Zobel J. Compression
of Nucleotide Databases for Fast Searching.
Bioninformatics, vol. 13, 1997, pp. 549–554.

[8] Altschul S.F., Madden T.L., Schaeffer A.A.,
Zhang J., Zhang Z., Miller W., and Lip-
man D.J. Gapped BLAST and PSI-
BLAST: a new generation of protein database
search programs. Nucleic Acids Research,
vol. 25, 1997, pp. 3389–3402. URL
http://www.ncbi.nlm.nih.gov/BLAST.

[9] Seward J., Burrows M., Wheeler
D., Fenwick P., Moffat A., Neal R.,
and Witten I. The BZIP2 Com-
pression Program, circa 2001. URL
http://sources.redhat.com/bzip2.

[10] Benson D.A., Karsch-Mizrachi I., Lipman
D.J., Ostell J., Rapp B.A., and Wheeler D.L.
GenBank.Nucleic Acids Research, vol. 28(1),
January 2000, pp. 15–18.

[11] Kuri-Morales A.F. and Ortiz-Posadas M.R. A
New Approach for Representation in Biolog-
ical Sequences.WSEAS Transactions on Bi-
ology and Biomedicine, vol. 3, January 2006,
pp. 31–36.

Proceedings of the 3rd WSEAS International Conference on Mathematical Biology and Ecology, Gold Coast, Queensland, Australia, January 17-19, 2007 26

