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Abstract: This paper addresses the problem of designing a network-delay-dependent switching controller that
achieves the H∞ disturbance-rejection performance under an L∞ performance representing componentwise input
saturation. To design such controller, this paper first builds up the conditions for set invariance, and then incorpo-
rates these conditions in the synthesis of dynamic state-feedback H∞ control. The proposed design conditions are
characterized in terms of linear matrix inequalities with one prescribed scalar.
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1 Introduction
The technologies on multi-accessible communication
networks, such as Ethernet with flexibility, cost ef-
fectiveness, speed improvement, and distributiveness,
have been recently received considerable attention in
the area of networked control systems (NCSs) since
multi-accessible communication networks are very
useful for data transmission linkage in control appli-
cations. However, since the multi-accessibility causes
the communication networks to suffer from random
networked-induced delays that deteriorate the stability
and control performance of closed-loop control sys-
tems, one needs to definitely handle the delays when
implementing a feedback control loop closed through
multi-accessible communication networks. Thus, nu-
merous investigations and research efforts have been
undertaken to deal with the delays (see e.g., [7]–[11],
and references therein).

In more practical application for such systems,
one necessarily needs to address the input saturation
during the control design procedure since every phys-
ical actuator is subject to the saturation that deterio-
rates the stability of the control applications. How-
ever, to the best of our knowledge, there has been yet
no results of taking into account the saturation of ac-
tuators in the process of constructing the NCSs. Of
course, for the traditional point-to-point communica-
tion network, various research results of handling ex-
plicitly the input saturation have been already pub-
lished in the system and control literature, particu-
larly of which several important results of handling di-
rectly the input saturation have recently appeared well
in [1], [4]–[6], and references therein. In this paper,

we shall use the polytopic representation method, pro-
posed first in [4], to handle the input saturation non-
linearity, which allows high gain control to be used for
stabilization.

In order to address explicitly the effects of both
data-transmission delay and loss of data, first, we em-
ploy a reliable transport protocol that guarantees data
delivery and supports that transmitted data have their
time-stamp information. Based on such a protocol,
we propose a discrete-time system over asymmetric
path-delay configurations (SOAP) on the high-speed
networks, which has the same structure as that of [7]
except for the point that a saturator is inserted be-
tween the controller and the communication networks,
depicted in Fig. 1-(a). As mentioned in [7], the
SOAP has two different paths sharing a reliable trans-
port protocol; one path delivers constant-delayed data
to the destination by using the FIFO (First-In-First-
Out) data buffer, and the other path delivers data with
their time-stamp information to the destination. In this
framework, we shall develop a systematic methodol-
ogy for designing an H∞ control for NCSs subject to
input saturation via a deterministic approach. To this
end, we first propose a dynamic state-feedback quasi-
linear parameter-varying (QLPV) control law depen-
dent on the previous mode which denotes one of sta-
tuses that a switching controller can belong to. Based
the control law, we formulate the conditions for set in-
variance in terms of LMIs with one prescribed scalar.
And then, we use the obtained conditions in construct-
ing a network-delay-dependent H∞ controller which
achieves the maximal disturbance rejection.
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Figure 1: (a) The SOAP with a saturating controller. (b) A mode
transition diagram (dmax = 2).

2 Preliminaries

Consider the following linear time-invariant (LTI)
system of the form

x(k + 1) = Ax(k) +B1w(k) +B2ur(k),

z(k) = Cx(k) +D1w(k) +D2ur(k), (1)

where x(k) ∈ Rn, ur(k) ∈ Rm, w(k) ∈
Rp and z(k) ∈ Rq denote the state, the in-
put, the disturbance and the performance output,
respectively. Here, it is assumed that the distur-
bance w(k) is unknown but belongs to Wδ :=
{

w ∈ Rp | wT (k)w(k) ≤ δ, δ ≥ 0, ∀k ≥ 0
}

.
Before going ahead, we make the same three as-

sumptions (A1), (A2), and (A3) as did [7]. As men-
tioned in [7], in the down-link (see Fig. 1-(a)), since
the controller does not exactly know when the input
us(k) acts on the plant, we shall force the down-
link delay to be fixed into its bound value dM , i.e.,
ur(k) = us(k − dM ). Contrary to the down-link, in
the up-link (see Fig. 1-(a)), we shall use the real-time
information on the up-link delay sequences delivered
to the controller (time-stamp information). Refer [7]
for the detailed explanation on the proposed SOAP
structure. With the above settings, the resulting sys-
tem model in the controller point of view is given as
follows:

x̃(k + 1) = Ã x̃(k) + B̃1 w(k) + B̃2 us(k), (2)

z(k) = C̃ x̃(k) + D̃ w(k), (3)

xd(k) = Ẽ(k) x̃(k), (4)

us(k) = sat(u(k), ū), (5)

where x̃(k) := [xT (k) | xT (k − 1) · · · xT (k −
dM ) | uT

s (k − 1) · · · uT
s (k − dM )]T ∈ Rt, t =

n + (n + m)dM , xd(k) ∈ Rn, u(k) ∈ Rm and
ū ∈ Rm denote the augmented state, the delayed
state, the raw control input and the saturation level,

respectively, and the matrices are defined as

[Ã|B̃1|B̃2] =













A 0 0 0 B2 B1 0
I 0 0 0 0 0 0
0 I 0 0 0 0 0
0 0 0 0 0 0 I
0 0 0 I 0 0 0













, (6)

C̃ =
[

C 0 0 0 D2

]

, D̃ = D1, (7)

Ẽ(k) =
[

diag(Φk0, · · · ,Φkm) 0
]

, (8)

where if x(k − r) is avilable at time k, Φkr is set to
identity matrix, and otherwise, Φkr is set to zero ma-
trix. xd(k) is determined by (4) with the help of the
time-stamp information. By the basic characteristics
of the SOAP, we can determine (2dM+1 − 1) different
Ẽ(k) for a given dM . We shall henceforth call each
status corresponding to Ẽ(k) a mode, say, m(k). The
m(k) will be expressed as m(k) = (b0b1 · · · bdM

)2,
where (·)2 means the binary representation of m(k).
The r-th bit, say, br, is set to 1 if the r-delayed
state, x(k − r), is available, otherwise, the bit is
set to 0. The mode m(k), hence, belongs to a set
M := {m ∈ R | m = 1, 2, · · · , 2dmax+1 − 1}.
Besides, based on the second assumption (A2), we
can uniquely determine a set of transitions, say, S ,
only if dM is determined: S := {(m(k),m(k − 1)) |
all possible transition pairs yielding (A1) and (A2)
for m(k) ∈ M, m(k − 1) ∈ M, ∀k} , For exam-
ple, if dM is 1, we have three modes, (10)2,
(01)2, and (11)2, and a set of transitions S =
{(1, 1), (1, 2), (1, 3), (3, 1), (3, 2), (3, 3)}. In the case
of dM = 2, possible modes and transitions are shown
in Fig. 1(b). One mode may transit to other mode
with no received data, which is represented as the dot-
ted lines; other kinds of transitions are represented as
the solid lines. In this paper, we shall directly handle
the input saturation nonlinearity by using the follow-
ing lemma proposed in [4].

Lemma 1 Let D be the set of m×m diagonal matri-
ces whose diagonal elements are either 1 or 0. Sup-
pose that |vr| ≤ ūr for all r = 1, · · · ,m, where
vr and ūr denote the r-th element of v ∈ Rm and
ū ∈ Rm, respectively. Then

sat(u, ū)=

2m

∑

`=1

α`

(

D`u+D−

` v
)

,

2m

∑

`=1

α` = 1, (9)

where α` ≥ 0 and D` denote all elements of D, and
D−

` = I −D`.

Consider a previous mode (PM)-dependent dynamic
quasi-linear parameter varying (QLPV) control law
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which switches itself depending on its previous and
current modes:

xc(k + 1) = Fji(k)xc(k) +Gji(k)Ẽj x̃(k), (10)

u(k) = Hjixc(k) + JjiẼj x̃(k) (11)

subject to

[Fji(k) Gji(k)] =

2m

∑

`=1

α`(k)
[

F `
ji G

`
ji

]

, (12)

where α`(k) denote the interpolation coefficients at
time k in (9), the subscripts j and i stand for m(k)
and m(k − 1), respectively, and xc(k) ∈ Rt denotes
the controller state. In order to use Lemma 1 in repre-
senting the input saturation nonlinearity (5), we shall
employ an auxiliary PM-dependent control input v(k)
as follows:

v(k) = Kjixc(k) + LjiẼjx̃(k) = Vjix̄(k), (13)

where Vji :=
[

LjiẼj Kji

]

. Thus, if x̄(k), for all k ≥

0, belongs to L(Vji) defined as

L(Vji) :=
{

x̄ ∈ Rt | − ū ≤ Vjix̄(k) ≤ ū
}

, (14)

then

sat (Ujix̄(k), ū) =

2m

∑

`=1

α`(k)
{

D`Uji +D−

` Vji

}

x̄(k),

where Uji :=
[

JjiẼj Hji

]

. Accordingly, the result-
ing closed-loop system subject to x̄(k) ∈ L(Vji), for
all k ≥ 0, can be rewritten as

x̄(k + 1) = Āji(k)x̄(k) + B̄w(k), (15)

z(k) = C̄x̄(k) + D̄w(k), (16)

where the matrices are defined as

Āji(k) =

2m

∑

`=1

α`(k)Ā
`
ji,

2m

∑

`=1

α`(k) = 1, α`(k) ≥ 0,

Ā`
ji :=

[

Ã+ B̃2

(

D`Jji +D−

` Lji

)

Ẽj

G`
jiẼj

B̃2

(

D`Hji +D−

` Kji

)

F `
ji

]

,

B̄T :=
[

B̃T
1 0

]T
, C̄ =

[

C̃ 0
]

, D̄ = D̃.

3 Main Results

First of all, we shall find the conditions for obtaining
the ellipsoidal sets E(Pi) such that, for all k ≥ 0, i ∈
M and w ∈ Wδ,

ψ(k, x̄(0), w) ∈ E(Pi), ∀x̄(0) ∈ E(Pi), (17)

where ψ(k, x̄(0), w) denotes the state trajectory of the
closed-loop system and E(Pi) denote PM-dependent
ellipsoidal sets defined as, for all i ∈ M,

E(Pi) :=
{

x̄ ∈ Rt | x̄TPix̄ ≤ 1, Pi > 0
}

. (18)

In the following lemma, we present the conditions
for obtaining the ellipsoidal sets E(Pi) with the prop-
erty (17).

Lemma 2 Let δ ≥ 0 be given. Suppose that there
exist 0 ≤ λ1 ≤ 1 and P̄i > 0, i ∈ M, such that, for
all (j, i) ∈ S and ` ∈ [1, 2m],

0 ≤





λ1Pi 0 (∗)
0 (1/δ)(1 − λ1)I (∗)
Ā`

ji B̄ P̄j



 , (19)

E(Pi) ⊂ L(Vji), (20)

where P̄i := P−1

i . Then there exist the ellipsoidal sets
E(Pi) such that, for i ∈ M and w ∈ Wδ,

ψ(k, x̄(0), w) ∈ E(Pi), ∀x̄(0) ∈ E(Pi). (21)

We denote the H∞ norm boundedness of the
transfer function from w to z, Tzw, as ||Tzw||∞ < γ,
i.e., for all nonzero w(k) ∈ L2+,

||z(k)||2 < γ2||w(k)||2, (22)

where the upper bound γ is in inverse proportion to
the disturbance rejection capability. In this paper, we
shall solve the following problem of minimizing the
upper bound γ so as to construct a PM-dependent dy-
namic QLPV controller which achieves the maximal
disturbance rejection capability:

min γ subject to (19), (20), and (22), (23)

where the conditions (19) and (20) make the state tra-
jectories remain inside E(Pi) ⊂ L(Vji), and thus the
transition of the state x̄(k) is always determined by
the closed-loop system (15).

In the following proposition, we propose the
method of designing a PM-dependent H∞ controller
via LMI approach.
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Proposition 3 Let δ ≥ 0 be given. For a prescribed
value 0 ≤ λ1 ≤ 1, suppose that there exist Xi, X̄i,
Ψ`

1,ji, Ψ2,ji, Ψ3,ji, Π`
ji(1, 2), Jji, Lji, and Γ that are

solutions of the following optimization problem:

γ∗ = min γ (24)

subject to

0 ≤













λ1Xi (∗) (∗) (∗) (∗)
λ1I λ1X̄i (∗) (∗) (∗)
0 0 ρI (∗) (∗)

Π`
ji(1, 1) Π`

ji(1, 2) XjB̃1 Xj (∗)

Π`
ji(2, 1) Π`

ji(2, 2) B̃1 I X̄j













,

0 ≤





Γ LjiẼj Ψ3,ji

(∗) Xi I
(∗) (∗) X̄i



 , Γrr ≤ ū2
r ,

0 ≤



















Xi (∗) (∗) (∗) (∗) (∗)
I X̄i (∗) (∗) (∗) (∗)
0 0 γ2I (∗) (∗) (∗)

Π`
ji(1, 1) Π`

ji(1, 2) XjB̃1 Xj (∗) (∗)

Π`
ji(2, 1) Π`

ji(2, 2) B̃1 I X̄j (∗)

C̃ C̃X̄i D̃ 0 0 I



















,

where ρ := (1/δ)(1 − λ1), and Γrr denotes the r-th
diagonal element of Γ,

Π`
ji(1, 1) := XjÃ+ Ψ`

1,jiẼj ,

Π`
ji(1, 2) := XjÃX̄i +XjB̃2

(

D`Hji +D−

` Kji

)

Ȳ T
i

+ +Ψ`
1,jiẼjX̄i + YjF

`
jiȲ

T
i ,

Π`
ji(2, 1) := Ã+ B̃2

(

D`Jji +D−

` Lji

)

Ẽj ,

Π`
ji(2, 2) := ÃX̄i + B̃2

(

D`Ψ2,ji +D−

` Ψ3,ji

)

,

Ψ`
1,ji := XjB̃2

(

D`Jji +D−

` Lji

)

+ YjG
`
ji,

Ψ2,ji := JjiẼjX̄i +HjiȲ
T
i ,

Ψ3,ji := LjiẼjX̄i +KjiȲ
T
i .

Then closed-loop system is asymptotically stable
in the absence of disturbances, and ||z(k)||2 ≤
γ∗||w(k)||2 holds in the presence of disturbances.

4 Numerical Example

To verify the performance of the proposed control al-
gorithm, we consider a discrete linear time-invariant
(LTI) plant model (1) with the following system ma-
trices:

[

A B1 B2

C D1 D2

]

=





1.0 −0.5 0.1 1.0
1.0 0.5 0.5 0.5

0.3 0.6 1.0 0.2



 .

Table 1: Disturbance rejection capability
dM ū γ∗ ū γ∗

0 1 1.3641 3 1.2505
1 1 1.4723 3 1.4343
2 1 2.6027 3 1.8046

For δ = 0.6 and ū = 1 (or ū = 3), we solve the opti-
mization problem in Proposition 3 to obtain the upper
bound γ∗ where the prescribed value λ1 is tuned be-
tween 0 and 1. Simulations are performed at various
dM values from dM = 0 to dM = 2, where random
delay sequences are generated with the same method
as did in [7].

5 Concluding Remarks

In this paper, we addressed the problem of designing
an H∞ control for networked control systems (NCSs)
with the effects of both the network-induced delay
and the input saturation. To design such control, we
first found the conditions for set invariance, charac-
terized by LMIs with one prescribed scalar, and then
used these conditions for designing a dynamic state-
feedback H∞ control dependent on previous mode.
We verified the performance of the proposed control
algorithm via a numerical example.
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