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Abstract: Essentially 2-dimensional, subsonic, small viscosity (air, water), turbulent, separated flows are discussed. 

Several well-known flow configurations are analyzed with the aim of understanding the flow mechanisms. For 

flows around circular cylinders the classical explanation of the flow separation is completed with the Coanda 

effect. For vortex rows with unidirectional rotations flow separations are explained by Knapp’s cycle, for non-

cavitating flows as well. For Karman vortex rows the vortex formation is attributed to alternate jet formations. 

Some of the main conclusions are derived from cavitation tunnel experiments. At the end listing the main physical 

factors is attempted.  
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1   Introduction 
Many efforts are made to compute flows with flow 

separations [1]. The abundant information even on the 

tiny details of the flows, however, does not really 

reveal the fluid mechanical background of these flows. 

To understand the basic mechanisms one is inclined to 

return to rational mechanics, the approach which 

started with Newton and Euler. This paper has been 

written in an attempt to provide a classical analysis for 

essentially 2-dimensional, turbulent, small viscosity, 

separated flows, like those past circular cylinders in air 

or water tunnels. At first sight cavitating flows seem to 

be more complicated than flows in air tunnels. 

Nevertheless, the contribution of the cavitation tunnel 

experiments to the understanding of 2D flow separa-

tions is enormous. This is utilized below.  

  

 

2   Pelton jet 
A jet from a Pelton model turbine nozzle is shown in 

Fig. 1. A computation assuming incompressible fric-

tionless flow resulted in decreasing radius r with 

increasing coordinate x. This contradicted to the 

experiment, where, after the vena contracta, r increased 

with x as seen in the photo. The discrepancy is caused 

by the turbulence. The computed jet is circular. The 

boundary of the real jet is irregular due to turbulence. If 

a small fluid mass m at jet boundary gets a small 

velocity component v' perpendicular to the axis, then 

this mass will continue its motion with its new velocity 

since in the constant pressure region there is no force to 

change it. Thus the path of such a particle is a straight 

line, the photo truly shows this. Further downstream 

this mass may even depart from the jet as a droplet. 

 

 
 

Fig. 1. Pelton jet, photo C. Zombor, permission by him  

 

     This case offers an extra opportunity to obtain 

measures for the turbulence from macroscopic para-

meters. The angle of the particle path can be measured. 

Since the jet velocity is known, the turbulent velocity v' 

can be calculated. Catching the droplets beside the jet 

may provide information on the size of the region what 

took this velocity.   
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3   Flow past circular cylinders 
Circular cylinders placed perpendicularly into the main 

flow offer a splendid example for flow separations. The 

well-known diagrams are repeated here in Fig. 2. 
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Fig. 2. Flows past cylinders, a, drag  coefficient, 

b, Strouhal number, c, pressure coefficient, after [2] 

and [3]. φ is the angle from the front stagnation point. 

 

     The drastic change in CD is seen in Fig. 2a at the 

critical Reynolds number. Three points A, B, and C are 

noted on the curve where the flow conditions are 

analyzed. The boundary layers separate in each case. 

The pressure in the wake regions is nearly constant, as 

seen in Fig 2c. The separation angles given in Fig. 2a 

were determined from these pressure distributions at 

points where the wake pressure is already reached.  

     These separation angles are not very accurate. At 

point A rather a separation region may be suspected in 

the range φ = 60 to 85 degree (Fig. 2c). There is some 

evidence that the separation point oscillates in this 

range with the pace of the vortex shedding. 

     The Strouhal number plotted here (Fig. 2b) was 

calculated from the time periods between shedding 

vortices. Below Re = 10
5
 a single curve is obtained. 

Above this value the shedding becomes irregular. For 

this an explanation is attempted at the end of the paper. 

     The classical explanation suggested by Prandtl for 

the fall of CD at the Recrit is the following [2]. In the 

range Re = 10
3
 to 10

5
 the boundary layer separating 

from the cylinder is laminar. The transition to turbulent 

boundary layer occurs downstream the separation 

point. With increasing Re, the transition point gradually 

approaches the separation point, and when it arrives 

near to the cylinder, the boundary layer adjoins (or 

reattaches) to the surface of the cylinder. The larger the 

separation angle the wake becomes narrower (Fig. 2a), 

and CD is smaller. However, it is still an open question 

why the boundary layer adjoins to the surface. For this 

an explanation is attempted at the end of the paper. 

     The dotted line in Fig. 2a was obtained with rough 

cylinder. Roughness brings the transition point nearer 

to the surface, this is why Recrit became smaller.  

 

 

4   Inertia separation             
For case A one is tempted to return to ‘inertia 

separation’ introduced by Strscheletzky [4]. 

 
 

Fig. 3. Analogy for flow separation in Case A 

 

The inertia of the fluid masses may be responsible for 

the flow separation. An analogy is shown in Fig. 3, 

backing the idea. Strscheletzky derived ‘inertia 

separation’ from the Hamiltonian principle of 
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mechanics. The technique [5] is based on calculating 

the variations of a certain integral over the flow 

domain. If it is not extremal, then flow separation is 

predicted. This theory includes, however, a logical 

‘circulus viciosus’. The Hamiltonian principle is a 

consequence of the Newtonian laws; therefore it cannot 

be used to make distinction among flows obeying to the 

Newtonian laws. Though the theory fails, the idea is 

part of the truth. Consider a fluid particle (Fig. 3), 

traveling at the surface of the cylinder but outside the 

boundary layer. It is pressed to the cylinder by the 

neighboring particles. However, reaching near to 

zenith, the pressure becomes less and less, and at a 

certain point the inertia of the particle may overcome 

the effect of the pressure, and the particle may leave the 

surface like the small car in Fig. 3. Thus, inertia plays 

an important role in flow separations when the bound-

ary layer is laminar. However, the inertia alone does 

not explain separation, since the turbulent boundary 

layer, under identical inertia conditions outside the 

boundary layer, does not separate at φ = 85 degree.  

 

 

5   Coanda effect 
In the boundary configuration of Fig. 4 a jet discharges 

from a slot into a constant pressure space. The jet is 

attracted by the wall: this is the Coanda effect. 

 
 

Fig. 4. 2D Coanda effect: the wall attracts the jet. 

 

     Considering air flow, the Coanda effect is explained 

as follows. The turbulent jet diverges (as the Pelton 

jet). It reaches the wall somewhere, perhaps far away. 

A closed space is resulted between the jet and the wall. 

The turbulent jet takes air out of this space, and so its 

pressure p2 decreases. It is the pressure differential      

p1 – p2  that pulls the jet towards the wall. 

     The Euler equation may be written for the jet: 
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of which it follows that R is nearly constant, the jet is 

nearly circular. The decreasing p2 stops at a certain 

value. Denote by Qturbulence the air volume per unit time 

carried away by the turbulent jet from the closed space, 

and by Qreturn jet the air volume per unit time of the 

return jet (Fig. 4) caused by the main jet attacking the 

wall at an inclination (what can be calculated easily). 

The steady flow is determined by the equilibrium: 

jetreturnturbulence QQ =    .                 (2) 

     This shows that turbulent flow computations may be 

successful for the steady 2D Coanda flow only if 

Qturbulence is reliably determined. 

     For water jets discharging into water the Coanda 

effect is still valid, since water is also compressible. 

 

 

6   Diffuser   
Looking at Fig. 5 the Coanda effect is clearly important 

in diffuser flows. Assuming steady flow, the curvature 

of the streamlines indicates the presence of a pressure 

gradient. It seems however, that the experimental 

evidence of the depression zone on the wall has not 

been fully explored yet.  

 
Fig. 5. Flow in a 2D diffuser 

 

 

7   Borda-Carnot loss 
The same is valid for a sudden enlargement of the flow 

channel as shown in Fig. 6. In this case the flow loss 

can easily be determined by the Borda-Carnot loss 

formula what serves well in practice. However, in 

calculating the boundary layer losses, in most cases 

these are at a fraction of the Borda-Carnot loss term, 

and therefore unsteady flow and continuous formation 

of vortices may be expected, what is again not explored 

in sufficient details. 

 
Fig. 6. Sudden enlargement of the flow channel 
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8   Convergent-divergent channel 
The formation of cavitating vortices can be seen in 

convergent-divergent channels (Fig. 7), which is a 

simple means to study the mechanism of cavitation on 

pump or hydroturbine blades.  

 

 
 

Fig. 7. Cavitating flow in convergent-divergent channel 

 

     Knapp determined the life-cycle of such cavities [6], 

and Furness developed it further [7]. It begins with the 

formation of a small cavity at the edge. The cavity 

increases, and a reentrant jet appears at the rear end of 

the cavity (Fig. 7). The reentrant jet refills the cavity, 

and when it strikes the liquid-gas interface, a cavity is 

separated from the main cavity. Later the separated 

cavity is swept away. At the time of the impact the 

original cavity disappears, and the cycle begins with 

the formation. This cavitation cycle at the edge 

generates a series of vortices, which rotate in the same 

direction and have cavities in their cores. 

     Under large pressure in the channel no cavity is 

formed but vortices still appear at the edge. The non-

cavitating vortex formation is very similar to the above 

one. In this case water occupies the place of the cavity, 

and this retards the reentrant jet. Therefore the Strouhal 

number of the non-cavitating vortex shedding is 

smaller than in the cavitating case. 

     Thus, in both cavitating and non-cavitating flows, if 

unidirectional vortex rows are found somewhere, the 

mechanism of the vortex formation is Knapp’s cycle. 

 

 

9   Karman vortex rows 
In the wakes of circular cylinders or other blunt bodies 

vortices appear rotating alternately. Von Karman devel-

oped a stability criterion for such vortex rows but did 

not dealt with the formation of the vortices. The near-

body flow mechanism attracted the attention of many 

researchers but the subject is not settled yet. 

     One frame of a high-speed film [8] is shown in Fig. 

8. An equilateral wedge model had been placed into the 

cavitation tunnel which operated at Re = 6.10
5
 (above 

critical) with cavitation number: 
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Fig. 8. Cavity downstream a wedge, [8],  

by permission of Sebestyén 

The foam-like substance in the cavity prevents seeing 

clearly what is happening in the cavity interior. Two 

intrusions are striking on the cavity boundary, which 

seem to be the roots of two jets. The presence of the 

second jet can be deduced from the fact, that the jet 

pushed the other side of the cavity upwards. The 

horizontal line drawn in the picture demonstrates the 

magnitude of the surface displacement. There are signs 

that the first jet nearer to the wedge also reached the 

other side of the cavity. A disturbance is seen on the 

surface, opposite to the root, and subsequent frames of 

the film show that the surface begun to be displaced in 

this region. Thus the presence of jets has been deduced.    

     The development of the deduced downward jet is 

sketched in Fig. 9. Fig. 8 is similar to Fig 9b. Since Fig. 

9e is the mirror of Fig. 9a, the upward jet starts. Thus, 

the mechanism is explained by alternate jet formations. 

 

9.1. Computation of a jet 

     The basic behaviour of jets has been studied by the 

author [9,10]. The result of a computer run is shown in 

Fig. 10.  The motion of the cavity contour was obtained 

by a time-marching program. Before each time step a 

boundary value problem was solved to provide the 

velocities along the contour. Initially circular arc cavity 

is assumed, with zero normal velocity but non-zero 

circulation around the wedge and cavity. A narrow jet 

was obtained (Fig. 10). This is understandable. Once a 

fluid mass entered into the cavity of constant pressure, 

it continues its motion with constant velocity. This 

explains why a jet is formed, and that the jet velocity 

within the cavity is constant. It is interesting to note 

that the jet velocities obtained at various cavitation 

numbers were high, at about double of the steady jet 

velocities (Rjabouchinsky model). This indicates the 

strong tendency for the jet formations in cavities. 
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Fig. 9. Development of downward jet in the cavity [9] 

 

    
Fig. 10. Computed jet formation in a cavity [10], 

05.0),0;1(,10,6,1 =∆=−=== ∞ txΓK ref v . 

 

Fig. 11. The circulation around the wedge and main 

cavity versus time, in an inviscid flow scheme  

     For the complete cycle of the vortex formation (Fig. 

9 is half) one may set up a frictionless scheme with the 

assumption that the circulation around the wedge and 

the main cavity change with time as shown in Fig. 11.     

When the jet touches the cavity surface (Fig. 9b) a 

vortex cavity is separated from the main cavity, taking 

circulation from the main cavity. Between vortex 

separations the flow is circulation preserving, Γ is 

constant. Thus Γ varies with time as in Fig. 11.   

     On wedge models the separation point is fixed. On 

circular cylinders it may oscillate. Nevertheless, 

according to the experiments the cavitating vortex 

formation mechanism is much the same for circular 

cylinders as for wedges (Fig. 9). 

 

9.2. Non-cavitating Karman vortex rows 

     There is evidence that non-cavitating vortex rows 

are generated also by alternate jet formations: 

a, Numerous pictures published on non-cavitating 

vortex rows show similar features as Fig. 9. 

b, In the cavitation tunnel, operating at high 

cavitation number when the main cavity was not 

present but small cavities visualized the flow, the 

movement of the alternate jets was observed. 

c, Theoretically, the pressure in the wake region is 

nearly constant as in the cavities. Thus the formation 

conditions of the jets are the same in both cases. The 

fluid mass in the non-cavitating wake naturally retards 

the movement of the jet, therefore jet velocities and the 

Strouhal numbers of the vortex separations are smaller. 

 

9.3. Origin of vortex circulation  

For non-cavitating flows several textbooks say that 

vortex circulation originates from the boundary layers. 

This is based on Kelvin’s theorem. Vorticity cannot be 

generated within the practically inviscid fluid; therefore 

it must come from the boundary layer. 

The theory of alternate jet formations offers another 

explanation. When the jet touches the cavity contour 

(Fig. 9b) the vortex cavity has a circulation. It is taken 

from the main cavity (Fig. 11), and neighboring jets 

continue to keep this circulation (dotted line in Fig. 9c). 

Both explanations are valid, though the latter seems 

simpler and more general. In setting up an appropriate 

flow model, in which the vorticity can be calculated in 

the flow domain, Stokes theorem reads: 

∫ ∫=
C S

dSvdrv rot   .                    (4) 

This indicates that any explanation based on the  

circulation (left side) can be converted to an 

explanation with vorticity (right side), and ‘vice versa’. 
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10  Conclusion 
For flow separations on curved boundaries the main 

elements of the flow mechanism are shown on Fig. 12. 

A, B and C are the points selected on Fig. 2a.  

 

Fig. 12. Elements of flow separations 

     Laminar boundary layers (Case A) separate 

smoothly. The mechanism is determined mainly by the 

inertia of the flow. Alternate jet formations call upon 

the Karman vortex row. 

     With increasing Reynolds number, when the 

transition point approaches the surface, the turbulent 

boundary layer transports the mass out of the narrow 

region, and the resulted depression pulls the boundary 

layer to the surface, as in Coanda flow. The depression 

zones are seen on Fig. 2c. They are rather stable; this is 

a common experience with the lift of airplane wings. 

     Cavitation experiments show that at the downstream 

end of the depression zone a Knapp cycle is working. 

Vortex cavities are seen shed from this region. Damage 

tests (with lead) [8] also prove this. Maximum damage 

was found in two area: near the impacts of the alternate 

jets, and near the impacts of the small Knapp cycles. 

     The Knapp cycle explains also the irregular vortex 

shedding shown on Fig. 2b. The situation is similar to 

pendulums (shown on the right side of Fig. 12). In the 

case of laminar separation (A), the shedding frequency 

is definite. In cases of turbulent boundary layer 

separations (B and C) the main motion is still 

determined by the alternate jets, but the Knapp cycle 

(presumably with higher frequency) disturbs this, like 

in the case of two interconnected pendulums. 

 

10.1  Factors affecting 2D flow separations       

A summary is attempted. The physical factors domi-

nant in 2D separations are: 

a, The inertia of the fluid masses (Pelton jet, laminar 

separation). 

b, The condition of the boundary layer near the 

separation zone (laminar or turbulent). 

c, Depression zones (whether boundary allows them to 

come into being, and are they influenced or not). 

 

10.2  The mechanism of vortex generation 

Vortex formations which appear in essentially 2D 

flows are caused by jets: 

a, for unidirectional vortex rows by the reentrant jets of 

the Knapp cycle,  

b, for bidirectional vortex rows by the alternate jets.  

     Promising computation for flows around circular 

cylinders was shown by Meng Wang et al. [11]. The 

mechanical background of such flows shown above 

may help in future computations.    
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