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Abstract:  
In some of the engineering problems, it is necessary to analyze the three-dimensional temperature profiles. In order to solve a typical 

problem numerically, the three-dimensional temperature diffusion equation is chosen as the mathematical model. The finite volume 

formulation is derived using Galerkin approach for the mesh of tetrahedral elements, which facilitates solving temperature problems 

with complicated geometries. In this approach, the Poisson equation is multiplied by the piece wise linear shape function of 

tetrahedral element and integrated over the control volumes which are formed by gathering all the elements meeting every 

computational node. The linear shape functions of the elements vanish by some mathematical manipulations and the resulted 

formulation can be solved explicitly for each computational node. The algorithm not only is able to handle the essential boundary 

conditions but also the natural boundary conditions using a novel technique. Accuracy and efficiency of the algorithm is assessed by 

comparison of the numerical results for a bench mark problem of heat generation and transfer in a block with its analytical solution. 

Then, introduced technique for imposing natural boundary conditions on unstructured tetrahedral mesh is examined for cases with 

inclined symmetric boundaries. 
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1   Introduction 
Availability of the fast and powerful personal 

computers motivates the use of numerical methods 

for solving temperature fields of engineering 

applications. In order to predict the thermal behavior 

of the solid states with internal source of heat 

generation rate several numerical solvers are 

developed using various methods such as Finite 

Difference Methods, Finite Element Methods and 

Finite Volume Methods. The Finite Difference 

Methods [1] convert differential form of the 

governing equations to simple formulations in the 

expense of some errors which degrades the accuracy 

of the numerical solutions. But the main problem of 

the Finite Difference Methods is serious difficulties 

in their application to solve real world problems due 

to necessity of the use of structured grids for 

geometric dicretization. The Finite Element Method 

[2] and Boundary Element Method [3] overcome the 

aforementioned problem by application of 

sophisticated mathematical manipulations on the 

integral form of the governing equations 

formulations which end up with complicated 

solution procedures. Consequently, the Finite 

Element Methods not only can handle complex 

geometries but also provide accurate numerical 

solutions for the boundary value problems. 

However, their heavy computational work loads, 

time-consuming complicated matrix computations 

and implicit solutions of real world applications with 

geometrical complexities some times are beyond the 

available hard ware efficiencies. The traditional 

Finite Volume Methods [4] convert the integral form 

of the governing equations for spatial problems into 

simple algebraic formulations. These methods may 

have some advantages over the Finite Difference 

Methods but the required structured meshes bring up 

major restrictions and errors with modeling of 

domains with complex geometries and irregular 

boundaries. The Finite Volume Methods suitable for 

the unstructured meshes [5] can handle the 

geometrical complexities using relatively simple 

formulations and computational procedures. 

Therefore, if the developed algorithm of these types 

of Finite Volume Method can satisfy the accuracy 

requirements of the desired problem, it would be an 

efficient means of computer simulations of the 
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engineering applications on ordinary hard ware 

systems.  

In this paper, three dimensional finite volume heat 

transfer solver module of NASIR (Numerical 

Analyzer for Scientific and Industrial Requirements) 

software is introduced. In this paper, the numerical 

solution algorithm of this software for the 

temperature field under the effects of internal heat 

generation rate as well as essential and natural 

boundary conditions is described. Here, the 

unstructured finite volume solution algorithm 

introduced for the viscous flow computations [6] is 

adopted for temporal solution of diffusive equation 

of heat generation and transfer.  

The governing equation is multiplied by the piece 

wise linear shape function of tetrahedral elements of 

an unstructured mesh and then it is integrated over 

all control volumes formed by the elements meeting 

every computational node (vertices of the elements). 

The algorithm takes advantage from the fact that the 

first derivatives of the linear interpolation function 

for the temperature are constant inside each element. 

By application of Gauss divergence theorem and 

using the property of the linear shape function, 

which satisfies homogeneous boundary condition on 

the dependent variable, the boundary integral terms 

can be omitted for every control volumes using 

surrounding nodal values. After some 

manipulations, the resulting formulations can be 

solved explicitly with rather light computational 

efforts [7].  

Using a novel numerical technique for imposing 

natural boundary conditions symmetric boundaries 

are used for reducing computational efforts. Hence, 

an efficient solver is developed for the solution of 

three-dimensional temperature fields with complex 

boundaries which geometrically can be modeled by 

the use of unstructured mesh of tetrahedral elements. 

In order to assess the performance of the developed 

solver, the numerical solution results of temperature 

in a typical block are compared with its analytical 

solution. 

 

 

2 Governing equation 
Assuming isotropic thermal properties for the solid 

materials, the familiar equation defining heat 

generation and transfer is of the form, 
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Where the parameters are ρ )( 3mKg density, 

C )( cKgJK o  specific heat, T )( co  temperature, 

κ  )( cmW o  heat conduction coefficient and 

Q� )( 3 hmJK  rate of heat generation per unit 

volume and the thermal diffusion is defined as 

Cρκα /= .  

 

 

3 Numerical Simulation 
Although for the solution of relatively simple 

phenomenon analytical procedures can be 

considered, for the majority of the cases analytical 

solutions are impossible or very restrictive. As an 

alternative, numerical method can be an efficient 

and powerful means of solutions for such cases. 

Several attempts have been made to solve transient 

heat transfer equations using well-known methods 

such as the finite difference, finite volumes and 

finite elements methods. Each of them has its own 

shortcomings and difficulties. Here, an algorithm is 

described for the numerical solution on unstructured 

mesh of tetrahedral.  

The derivation of the discrete formulations starts 

using Galekin approach. The manipulations end up 

with a discrete equation without the linear shape 

function of element and it can be solved explicitly 

for every computational node surrounded by the 

elements. This numerical technique can accurately 

solve the three-dimensional temperature field with 

complex boundaries with considerable efficiency 

achievement.    

Consider the governing equation for heat generation 

and transfer in a homogenous domain as, 
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Where T (temperature) is the unknown parameter 

and S is the heat source. If temperature gradient 

flux in i  direction (secondary variable) is defined 

as, 
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And hence, the equation takes the form: 
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By application of the Variational Method, after 

multiplying the residual of the above equation by the 
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test function φ  and integrating over a sub-

domainΩ , we have,  
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The terms containing spatial derivatives can be 

integrated by part over the sub-domain Ω and then 

equation (5) may be written as, 
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Using gauss divergence theorem the equation takes 

the form: 
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Where Γ  is the boundary of domain Ω .  

Following the concept of weighted residual 

methods, by considering the test function equal to 

the weighting function, the dependent variable 

inside the domain Ω  can be approximated by 

application of a linear combination, such as 

∑ =
= nodesN

k kkTT
1

ϕ [8].  

According to the Galerkin method, the weighting 

function φ  can be chosen equal to the interpolation 

function ϕ. In finite element methods this function is 

systematically computed for desired element type 

and called the shape function. For a tetrahedral type 

element (with four nodes), the linear shape 

functions, kϕ , takes the value of unity at desired 

node n, and zero at other neighboring nodes k of 

each triangular element ( nk ≠ ) [9]. 

 Extending the concept to a sub-domain to the 

control volume formed by the elements meeting 

node n (Figure 1), the interpolation function nϕ  

takes the value of unity at the center node n of 

control volume Ω  and zero at other neighboring 

nodes m (at the boundary of the control volume Γ ). 

Noteworthy that, this is an essential property of 

weight function, ϕ, which should satisfy 

homogeneous boundary condition on T at boundary 

of sub-domain [3]. That is why the integration of the 

linear combination ∑ =
= nodesN

k kkTT
1

ϕ  (as 

approximation) over elements of sub-domain Ω  

takes the value of nT  (the value of the dependent 

variable in central node n). By this property of the 

shape function ϕ  ( 0=nϕ  on boundary Γ of the sub-

domain Ω ), the boundary integral term in equation 

(7) takes zero value for a control volume which the 

values of T assumed known at boundary nodes.  

 

   
Figure 1 - Sub-domain Ω  associated with node n of 

the computational field 

 

After omitting zero term, the equation (7) takes the 

form,  
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In order to drive the algebraic formulation, every 

single term of the above equation first is 

manipulated for each element then the integration 

over the control volume is performed. The resulting 

formulation is valid for the central node of the 

control volume. 

For the terms containing no derivatives of the shape 

function ϕ , an exact integration formula is used as 

4/)3()!!!!(64321 Λ=++++Λ=∫Λ dcbadcbadcba ϕϕϕϕ

(for a=1 and b=c=d=0), where Λ  is the volume of 

the tetrahedral element [6]. This volume can be 

computed by the integration formula as,  

kk iiii xdx ][)(
4∑∫ ≈Λ=Λ

Λ
�δ  where ix  and 

i�δ  are the average i direction coordinates and 

projected area (normal to i direction) for every side 

face opposite to node k of the element. 

Therefore, the transient term ∫Ω Ω∂
∂ dT

t
φ  for each 

tetrahedral element Λ  (inside the sub-domain) can 

be written as, 
dt

dTdT
t

)
4

( Λ=Λ∂
∂ ∫Λ φ . 

Consequently, the transient term of equation (8) for 
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the sub-domain Ω  (with central node n) takes the 

form, 
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Similarly, the source term of equation (8), 

∫Ω ΩdSϕ , for each element Λ  (inside the sub-

domain), will be written as, 

SdS )
4

(∫Λ Λ=Λϕ . Then the source term 

of the equation (8), for the control volume Ω  (with 

central node n) takes the form, 
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Now we try to discrete the terms containing spatial 

derivative, Ω∫Ω d
x

F
i

d

i )( ∂
φ∂ in equation (8). 

Since the only unknown dependent variable is 

∑=
4

k kkTT ϕ  and the shape functions, kϕ , are 

chosen piece wise linear in every tetrahedral 

element, the temperature gradient flux (
d

iF  is 

formed by first derivative) is constant over each 

element and can be taken out of the integration. On 

the other hand, the integration of the shape function 

spatial derivation over tetrahedral element can be 

converted to boundary integral using Gauss 

divergence theorem [9], and hence, 

i
i
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ϕϕ . Here ∆ is component of the 

side face element normal to the i  direction. The 

discrete form of the line integral can be written as, 

kk iid ][1)(.
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∆
�δϕϕ , where ki ][ �δϕ  is 

formed by considering the side of the element 

opposite to the node k, and then, multiplication of its 

component perpendicular to the i  direction by ϕ  

the average shape function value of its three end 

nodes. Hence, the term 
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φ∂  for a control 

volume Ω  (containing N elements sharing its 

central node). Since the shape function ϕ  takes the 

value of unity only at central node of control volume  

and is zero at the nodes located at the boundary of 

control volume, 3/1=ϕ  for the faces connected to 

the central node of control volume and 0=ϕ  for 

the boundary faces of the control volume. On the 

other hand the sum of the projected area (normal to i 

direction) of three side faces of every tetrahedral 

element equates to the projected area of the fourth 

side face, hence the term containing spatial 

derivatives in i direction of the equation (8), can be 

written as, 
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Where mi ][ �δ  is the component of the boundary 

face m (opposite to the central node of the control 

volume Ω ) perpendicular to i  direction. Note that, 
d

iF  is computed at the center of tetrahedral element 

of the control volume, which is associated with side 

m. The temperature gradient flux in i  direction, 

i

d

i x
T

F ∂
∂α= , at each tetrahedral element can be 

calculated using Gauss divergence theorem, 
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∂α , where 

id )( ∆  is the projection of side faces of the element 

perpendicular to i  direction. By expressing the 

boundary integral in discrete form as, 

∑∫ ≈∆
∆

3
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k kii TdT �δ , for each element  inside 

the control volume Ω. Therefore, we have, 
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Where, i�δ  is the component of kth face of a 

tetrahedral element (perpendicular to the i direction) 

and T is the average temperature of that face and 

Λ is the volume of the element. 

Note worthy that for control volumes at the 

boundary of the computational domain, central node 

n of the control volume Ω  locates at its own 

boundary. For the boundary sides connected to the 

to the node n there are no neighboring element to 

cancel the contribution. Hence, their contributions 

remain and they act as the boundary sides of the 

sub-domain. Therefore, there is no change to the 

described procedure for computation of the spatial 

derivative terms Ω∫Ω d
x

F
i

d

i )( ∂
ϕ∂ .    

Finally, using expressions (9.a), (9.b) and (9,c), the 

equation (8) can be written for a control volume 

Ω (with center node n) as: 
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The volume of control volume, Ω  can be computed 

by summation of the volume of the elements 

associated with node n.  

Remember, the heat source for each node n in 

concrete body is defined by ( ) nnenn tQS κα �= . 

The resulted numerical model, which is similar to 

Non-Overlapping Scheme of the Cell-Vertex Finite 

Volume Method on unstructured meshes, can 

explicitly be solved for every node n (the center of 

the sub-domain Ω  which is formed by gathering 

elements sharing node n). The explicit solution of 

temperature at every node of the domain of interest 

can be modeled as, 
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Now we need to define a limit for the explicit time 

step, tδ . Considering thermal diffusivity as 

Cρκα=  with the unit ( sm2
), the criterion for 

measuring the ability of a material for temperature 

change. Hence the rate of temperature change can be 

expressed as, 
n

n

t
αδ ≈Ω . Therefore, the appropriate 

size for local time stepping can be considered as, 

 

 
n

nt αβδ Ω=      )1( ≤β                        (13) 

 

β is considered as a proportionality constant 

coefficient, which its magnitude is less than unity. 

For the steady state problems this limit can be 

viewed as the limit of local computational step 

toward steady state.  

However, there are different sizes of control 

volumes in unstructured meshes. This fact implies 

that the minimum magnitude of the above relation 

be considered. Hence, to maintain the stability of the 

explicit time stepping the global minimum time step 

of the computational field should be considered, so, 

 

min)(
n

nt
α

βδ
Ω

=  )1( ≤β                      (14) 

 

Noteworthy that for the solution of steady state 

problems on suitable fine unstructured meshes, the 

use of local computational step instead of global 

minimum time step may considerably reduce the 

computational efforts. 

 

 

4   Boundary Conditions 
Two types of boundary conditions are usually 

applied in this numerical modeling. The essential 

and natural boundary conditions are used for 

temperature and temperature gradient flux 

(gradients) at boundaries, respectively [9].  

For those boundary nodes where nodal temperatures 

are to be imposed (essential boundary conditions), 

there is no need to compute the temperature. Hence, 

computed temperature at those node have to be 

replaced by the given certain values at the end of 

each computational step.  

Contrarily, there is no need to change the computed 

temperature at the boundary nodes where the natural 

boundary condition is to be imposed. In order to 

impose a given temperature gradient normal to the 

boundary faces, G (the rate of heat exchange per 

unit volume of the surface), the normal vector of the 

boundary faces ),,( 321 mmmm nnnn = can be utilized 

to compute ),,( 321 mmm GnGnGnG =  at the desired 

boundaries. Although simple techniques for 

imposing gradient at boundary can be applied for the 

cases that the boundary normal is parallel to one of 

the main directions of coordinate system, 

computational difficulties arise for the inclined or 

curved boundaries. For overcoming the problem, the 

computed gradient flux vector, 

),,( 321

dddd FFFF = , at the centre of adjacent 

element may be modified at the end of each 

computational step. First, the vector of temperature 

gradient tangent to the desired boundary face is 

decomposed from the computed gradient at the 

centre of adjacent element, 

 

mm

d

Tangantial nnFGF ).(−=                      (15.a) 

 

Then, the normal vector of temperature gradient can 

be imposed as, 

 

mNormal nGF =                                    (15.b) 

 

Finally, the temperature gradient vector at the centre 

of element adjacent to the desired boundary face is 

considered as, 

 

NormalTangantial

d

Modified FFF +=                          (16) 

 

 Using above mention technique the difficulties 

associated with inclined or curve boundaries are 
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overcome. Therefore, the proposed technique suites 

the present algorithm which is adopted for the 

domains with complex boundaries discretized using 

unstructured meshes. 

 

 

5 Structured Tetrahedral Meshes 
Structured tetrahedral mesh can be generated by 

considering 5 or 6 tetrahedron between an eight 

nodded cubic mesh spacing (figure2). A general 

view of two typical meshes which are formed by 

considering 5 or 6 tetrahedron between an eight 

nodded cubic mesh spacing are presented in figure 

3. 
 

6 Verification of the model 
The accuracy of the solution of spatial derivative 

terms is investigated by comparison of the results of 

the numerical solver with the analytical solution of 

the following steady state diffusion equation 

(boundary value problem) with a constant source 

term as [2,9],  

 

02

2

Q
x

T
k

i

=
∂

∂
     )2,1( =i        (17) 

 

in the spatial field of ( ){ }1,0 <<=Ω yx . 

Considering the constants of the above equation as 

1=k  and 10 =Q   as well as the boundary 

conditions at 1=x , 1=y  as 0=T  and  

0=∂
∂

n
T  (symmetric boundary conditions) at 

01 =x , 02 =x . The analytical solution is given by 

[7],  
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In order to obtain a temperature field similar to the 

two dimensional solution of this problem on a 

section of the cube, the requirement of imposing 

natural boundary condition is relaxed by doubling 

the dimension, and hence, essential boundary 

condition ( 0=T ) is imposed over four the 

boundaries ( ){ }1,1, −=yx  and natural boundary 

condition ( 0=∂
∂

n
T ) at  ( ){ }1,1−=z .   The 

tetrahedral mesh which is generated by considering 

6 tetrahedral between cubic mesh spacing with eight 

nodes is presented in figure 3.b. This 2m ×2 m×2m 

mesh is formed by 11×11×11 grid points.  

The result of the numerical solution of equation (17) 

is shown in figure 4 in the form of temperature 

contour maps. The accuracy of numerical solution 

can be assessed in figures 5 by comparison between 

the computational and the analytical solution in two 

directions along the mesh.  

 

 

7 Inclined Symmetric Conditions 
 In order to assess the performance of introduced 

technique for imposing natural boundary conditions 

(i.e. symmetric condition 0=∂
∂

n
T ), several 

reductions on computational field is done by 

dividing the original field into smaller parts (figure 

6). As can be seen some of the symmetric surfaces 

(6.c and 6.d) are inclined. 

The computed temperature fields on the meshes 

presented at figure 6 are shown in figure 7 in the 

form of color coded maps of temperature. As can be 

seen the applied technique for imposing natural 

boundary condition preserves the accuracy of 

temperature gradients, even on inclined surfaces. 

The use of proper technique for symmetry condition 

provides considerable saving in computational 

efforts.   

 

 

8 Conclusion 
The equation of heat generation and transfer is 

solved on triangular element mesh utilizing linear 

shape function as an alternative test function. The 

resulted algorithm provides light explicit 

computation of time dependent problems. The 

simplicity of the algorithm makes it easy to program 

and extension for further developments. 

The numerical model was verified in two stages. 

Firstly, by using a boundary value problem and its 

analytical solution, the accuracy of the solution of 

the spatial terms was assessed. The results of the 

developed model present reasonable agreements to 

the analytical Secondly, the introduced technique for 

imposing natural (symmetry) boundary conditions 

on unstructured tetrahedral mesh is examined for 

cases with inclined boundary surfaces. The applied 

technique for imposing natural boundary condition 

not only preserves the accuracy of temperature 

gradients on inclined surfaces, but also provides 

considerable saving in computational efforts by 

paving the way for application of symmetric 

inclined boundary surfaces.   
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Fig. 2 Two cubic mesh spacing formed by eight nodes 

which are filled by a) 5 and b) 6 tetrahedral 
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Fig. 3 A general view of two typical meshes which are 

formed by considering 5 or 6 tetrahedron between an 

eight node cubic mesh spacing. 
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 Fig. 4 Computed temperature field in a cubic prism 
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Fig. 5 Comparison between the computational 

and the analytical solution,  

a: along the line y=0 (0<x<1) and  

ba: along the line y=x (0<x<1) 
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 Fig. 6 Using symmetric conditions for dividing the 

original cubic field into smaller parts as;  

a) Dividing the original cubic by 2 

b) Dividing the original cubic by 8 

c) Dividing the original cubic by 16 

d) Dividing the original cubic by 64 
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Fig. 7 Using symmetric conditions for temperature field 

with smaller mesh as;  

a) Dividing the original cubic by 2 

b) Dividing the original cubic by 8 

c) Dividing the original cubic by 16 

d) Dividing the original cubic by 64 
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