
Numerical Investigation of Pressure Load over Spillway Chutes with 

Vertical Curvatures 
 

SAEED-REZA SABBAGH-YAZDI
*
, FATEMEH ROSTAMI

** 

Civil Engineering Department, 

KN Toosi University of Technology, 

No.1346 Valiasr Street, 19697- Tehran, IRAN 

* SYazdi@kntu.ac.ir ,** Fa.Rostami@gmail.com 

and 

NIKOS E. MASTORAKIS 

Military Insitutes of University Education (ASEI)  

Hellenic Naval Academy 

Terma Chatzikyriakou 18539, 

Piraues, GREECE   mastor@wseas.org 

 
 

 

Abstract: For flow conduits with mild slope and considerably large vertical curvatures the hydrostatic 

distribution of the pressure may be used for design proposes. However, for the spillway chutes actual pressure 

load over the steep slope beds with small vertical curvatures may differ from the hydrostatic pressure values. 

The differences in pressure load on curved bed chutes are mainly because of the centrifugal forces.  In present 

work a two dimensional Finite Volume flow solver, which utilizes the Volume of Fluid technique, is devised 

to investigate the division of the numerically computed pressure from the hydrostatic assumptions using some 

measurements for laboratory test cases reported in the literature. 
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1   Introduction 
Rapidly varied transitions in open channels typically 

involve flows with high curvatures and or slop. The 

length of such transition is usually short and 

pressure distribution significantly non-hydrostatics 

and velocity distributions are highly non-uniform. 

At present most computational modeling of open 

channel flows are based on the depth-averaged St. 

Venant equations, in these equations, a uniform 

longitudinal velocity and hydrostatic pressure 

distribution are assumed. Correction coefficients 

may be applied for different distributions if they can 

be established a priori (Yen 1973). These equations 

are applicable for very shallow flows, with 

wavelength-to-depth ratios in excess of about 20 

(Henderson 1966). For moderately shallow flows 

(i.e., for shorter feature wavelengths), the 

Boussinesq equation are the next level of 

approximation (Chaudhry 1993). While the 

Boussinesq equation are applicable to some what 

shorter lengths (about six depths), they do not 

appear to have been successfully applied to 

problems whit steep slopes   (Montes 1994). 

Dressler (1978) attempt to extend the one 

dimensional approach to higher- curvature flows by 

using a curvilinear, orthogonal coordinate system 

based on the bed geometry. This approach, applied 

by Sivakumaran et al. (1983), is based on a 

potential-flow assumption. The method, how ever 

dose not account for the water-surface curvature 

being different from the bed curvature being 

different from the bed curvature and reduces to the 

St. Venant equation for a flat bed. 

Hager and Hutter (1984) presented the method, 

based on potential flow in a streamline coordinate 

system, which assumes a linear variation of flow 

angle and curvature between the bed and surface. 

The result was shown to be an improvement over the 

Boussinesq equation but limited to geometrically 

mild slopes (up to about 60°). A similar but higher-

order method was developed by Matthew (1991) in 

Cartesian coordinate system. This method involves 

an iterative solution. Corrections for the effect of 

friction were also incorporated. 

A further alternative was presented by Steffler and 

Jin (1993). There, the plane Reynolds equation were 

vertically averaged, and moment equations were 

developed by vertically integrating the Reynolds 

equations after they had been multiplied by vertical 

coordinate, The three extra equations allow 

specification of three further flow parameters. 

Linear longitudinal velocities as well as quadratic-
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pressure and vertical-velocity distributions were 

assumed, and equations were rewritten in terms of 

parameters of these distributions. Essentially, the 

approach amounts to a low-order weighted residual 

method. The method suffers from the crudeness and 

arbitrariness of the assumed distributions, and 

results in some long and complex equations where 

the terms are not of uniform order. It does have the 

advantage of incorporating the effect of turbulent 

stresses directly, although these are not important in 

the applications considered in this paper.  

In this paper, a module of FLOW-3D
®
 flow solver 

which uses first order finite volume scheme for 

structured meshes is applied to model the free 

surface flow over the two small scale test cases. 

First, flow from horizontal to a steep slope whit a 

circular arc transition is modeled. Second, flow over 

a symmetric and an asymmetric bed profile is tested. 

Note that, the utilized software applies the True-

VOF (volume-of-fluid) technique for treatment of 

the free surface, and hence, dose not incorporates 

any hydrostatic pressure distribution assumption (i.e. 

“streamline curvature” explicit consideration).  

 

 

2 Governing equation 
The general mass continuity equation is: 
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Where fV  is the fractional volume open to flow, 

ρ is the fluid density. The velocity components 
(u,w) are in the coordinate directions (x,z). Ay and Az 

are similar area fractions for flow in the y and z 

directions, respectively. 

The equation of motion for the fluid velocity 

components in the two directions are the Navier – 

Stokes equations as follows: 
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In these equations zx GG ,  are body accelerations, 

and zx ff ,  are viscous accelerations that for a 

variable dynamic viscosity µ  are as follows:  
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Fluid configuration is defined in terms of a volume 

of fluid (VOF) function, F(x, z, and t). This function 

represents the volume of fluid per unit volume and 

satisfies the equation.  
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The interpretation of F depends on the type of 

problem being soled. For a single fluid, F represents 

the volume fraction occupied by the fluid. Thus fluid 

exists where F=1 and void regions correspond to 

locations where F=0. Voids are regions without fluid 

mass that have a uniform pressure assigned to them. 

Physically they represent regions filled with a vapor 

or gas whose density is insignificant with respect to 

fluid density.  

 

 

3 Numerical Simulation 
FLOW-3D

®
 numerically solves the equations 

described in the previous sections using finite-

difference (or finite-volume) approximations. The 

flow region is subdivided into a mesh of fixed 

rectangular cells. With each cell there are associated 

local average values of all dependent variables. All 

variables are located at the centers of the cells except 

for velocities, which are located at cell faces 

(staggered grid arrangement). [1] 

 Curved obstacles, wall boundaries, or other 

geometric features are embedded in the mesh by 

defining the fractional face areas and fractional 

volumes of the cells that are open to flow (the 

FAVOR
TM
  method ).[1] 

Pressures and velocities are coupled implicitly by 

using time-advanced pressures in the momentum 

equations and time-advanced velocities in the mass 

(continuity) equation. This semi-implicit formulation 

of the finite-difference equations allows for the 

efficient solution of low speed and incompressible 

flow problems. The semi-implicit formulation, 

however, results in coupled sets of equations that 

must be solved by an iterative technique. In   

FLOW-3D
®
 two such techniques are provided. The 
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simplest is a successive over-relaxation (SOR) 

method. In some instances, where a more implicit 

solution method is required, a special alternating-

direction, line-implicit method (SADI) is available. 

The SADI technique can be used in one, two, or in 

all three directions depending on the characteristics 

of the problem to be solved. 

The basic numerical method used in FLOW-3D
®
 has 

a formal accuracy that is first order with respect to 

time and space increments. Special precautions have 

been taken to maintain this degree of accuracy even 

when the finite-difference mesh is non-uniform. 

A new VOF advection method based on a 3-D 

reconstruction of the fluid interface has been 

developed and implemented in FLOW-3D
®
 Version 

8.2. The Volume-of-Fluid (VOF) function is moved 

in one step, without resorting to an operator splitting 

technique, which gives the present method increased 

accuracy when the flow is not aligned with a 

coordinate direction.  

The existing VOF advection method in FLOW-3D® 

is based on the donor-acceptor approach first 

introduced by Hirt and Nichols.  

 

 
3.1 Transition from horizontal to steep slop 
For this part of numerical investigation, the 

experimental measurements reported by Montes 

(1994) are used. The experimental data for water-

surface and bed pressure profiles obtained from the 

plots provided by Montes (1994). These experiments 

were performed in a smooth channel 0.402 m wide. 

The steep slope 45° was studied. For this slop 

transition from horizontal to steep slop was obtained 

trough a circular arc of 0.1-m radius. 

The model boundary condition for this case, with 

critical flow occurring at upstream boundary, are  

specified upstream depth (h0) and vanishing 

derivatives of extra pressure and velocity variables. 

As downstream flow is supercritical, no conditions 

are applied at downstream end. For this case the bed 

shear stress term in neglected. 

Figs. 1 and 3 show the compute velocity magnitude 

and pressure couture and Figs. 2 and 4 show the 

compute and measured water-surface and bed-

pressure profiles for different discharges. The model 

predicted both the water-surface and bed-pressure 

extremely well. The agreement appears to improve 

with increasing discharge. 

The hydrostatic bed-pressure also shows in Fig. 3. 

The computed pressure distribution presents little 

differences with hydrostatic pressure distribution 

except for transition sections. These differences are 

due to curved bed in transition and efficiency of 

centrifugal acceleration. 

 

   

3.2 Symmetric and Asymmetric bed profiles 
The experimental measurements reported by 

Sivakumaran et al. (1983) are used for the present 

numerical investigation. These experiments were 

performed in a horizontal flume 915 cm long, 65 cm 

high and 30 cm wide. Two symmetric and 

asymmetric bed profiles, as shown in Figs. 5 and 9 

were tested. The leading edge of profile in each case 

was placed 366 cm downstream from the inlet box, 

i.e., head tank. The upstream undisturbed depth was 

measured at 16 cm from leading edge of profile. The 

symmetric profile was shaped according to a normal 

distribution, and was 20 cm high and 120 cm long. 

The asymmetric profile, with a 150-cm length, was 

achieved by passing a B-spline through a fixed set of 

coordinates. Further details of experimental system 

and bed profile can be found in Sivakumaran and et 

al. (1983). 

The results of model along with experimental data 

for the symmetric are shown in Figs. 6 and 8. For the 

low flow, the predicted water-surface elevation 

matches well with the measured data in the 

supercritical region, while the results in sub-critical 

regions follow the hydrostatic pressure distributions. 

The modeled bed pressures compare well with the 

measured data in the sub-critical region, while in the 

supercritical region the measured data show some 

scatter that is due to local turbulence resulting from 

bed curvature, as discussed by Sivakumaran et al. 

(1983). The pressure deviated from hydrostatic 

pressure distribution in the high curvature zone and 

this gap increases for high flow rate. For the high 

flow rate, the predicted water-surface elevation 

matches well with the measured data in the 

supercritical region. For the supercritical region, the 

model predicts a lower water surface elevation and 

bed pressure, while oscillations are predicted for 

both surface elevation and bed pressure just 

upstream from the crest. 

The results for the asymmetric shape are shown in 

Figs. 9-12. For the asymmetric shape, Figs. 10 and 

12 show the compute and measured water-surface 

and bed-pressure profiles for various discharges.  

The predicted depth and pressure in region of steep 

slope matches well with measured data if the bed 

and water surface curvatures are considerably large. 

However, for higher flow rate the numerical results 

present better agreements with experimental 

measurements in the steep slope regions.    
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4   Conclusion 
The results of present numerical investigations show 

that the predicted water-surface elevation matches 

well with the measured data. The computed 

pressures by the utilized three-dimensional flow 

solver (which uses True-VOF technique for 

computation of water free surface) are in good 

agreements with the experimental measurements. 

However, the computed the pressures at the bottom 

surface of chutes with vertical curvatures slightly 

differ from the measured pressure in some parts of 

the super-critical flow parts. The computed 

pressures along the conduit differ from the 

hydrostatic assumption due to curved bed and 

efficiency of centrifugal acceleration. The 

differences are more pronounce at the zones with 

considerably large vertical curvatures, particularly 

for high flow rates. Therefore, it can be stated that, 

in the regions with large bottom curvature the 

pressure distribution does not follow the hydrostatic 

pressure profile. For the convex bottom curvature 

the hydrostatic assumption for pressure is more than 

the actual pressure, while in concave curvature the 

contrary condition is observed. 
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Fig. 1, Computed velocity magnitude contours (m/s) for 

45° slop:  (a) Q=0.02 m
3
/s; (b) Q=0.04 m

3
/s. 
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Fig. 2, Water-Surface profile for transition 45° slop: 

 (a) Q=0.02 m
3
/s; (b) Q=0.04 m

3
/s. 

 

 
 

 
Fig. 3, Computed pressure contours (Pa) for transition 

45° slop:  (a) Q=0.02 m
3
/s; (b) Q=0.04 m

3
/s. 

 

-1.0

-0.5

0.0

0.5

1.0

-3 -2 -1 0 1 2 3

x/h0

p
/ γγ γγ
h
0

measurment

computational

hydrostatic pressure

 

-1

-0.5

0

0.5

1

-3 -2 -1 0 1 2 3

x/h0

p
/ γγ γγ
h
0

measurment

computational

hydrostatic pressure

 
 

Fig. 4, Bed-Pressure for transition 45° slop: 

 (a) Q=0.02 m
3
/s; (b) Q=0.04 m

3
/s. 
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 Fig. 5, Computed velocity magnitude (m/s) for 

symmetric bed form 

(a) q=359.9 m
2
/s, (b) q=1,119.7 m

2
/s. 
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Fig. 6, Water-Surface profile for symmetric bed form: 

 (a) q=359.9 m
2
/s, (b) q=1,119.7 m

2
/s. 

 

 
Fig. 7, Computed pressure contours (Pa) for symmetric bed 

(a) q=359.9 m
2
/s, (b) q=1,119.7 m

2
/s. 
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Fig. 8, Bed-Pressure for symmetric bed form:  

(a) q=359.9 m
2
/s, (b) q=1,119.7 m

2
/s. 
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Fig. 9, Computed velocity magnitude (m/s) for asymmetric 

bed form: (a) q=375.0 m
2
/s, (b) q=1,116.5 m

2
/s. 
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Fig. 10, Water-Surface profile for asymmetric bed form:  

(a) q=375.0 m
2
/s, (b) q=1,116.5 m

2
/s. 

 

 
Fig. 11, Computed pressure contour (Pa) for asymmetric 

bed form: (a) q=375.0 m
2
/s, (b) q=1,116.5 m

2
/s. 
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Fig. 12, Bed-Pressure for asymmetric bed form:  

(a) q=375.0 m
2
/s, (b) q=1,116.5 m

2
/s. 
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