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Abstract: - The modified form of the equation of motion at eddy-dynamic and cluster-dynamic scales is solved to 
describe the hydrodynamics of opposed finite jets.  The results suggest that one encounters and infinite cascade of 
self-similar, fractal, opposed jets as the stagnation point is approached at ever-smaller spatial resolutions.  Also, 
an analytical expression giving possible geometry of laminar premixed flames stabilized in opposed finite jets and 
propagating under Huygens principal is presented. The predicted flame geometries are found to be in agreement 
with the prior numerical studies as well as the observations of symmetric lean methane premixed flames at low 
stretch rates reported in the literature. 
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1 Introduction 
A scale-invariant statistical model of turbulence was 
recently employed to introduce a scale invariant 
model of statistical mechanics and its application to 
the field of thermodynamics [4].  A schematic 
representation of the model for the equilibrium fields 
of eddy-, cluster-, molecular-, and atomic-dynamics 
corresponding to the scales β =  e, c, m, a, and the 
associated non-equilibrium laminar flow fields is 
shown in Fig.1. 
 Following the classical methods [1-3], the scale-
invariant forms of the conservation equations were 
introduced and applied to present a modified hydro-
thermo-diffusive theory of laminar flames [5, 6].  
Because turbulent flows are composed of ensembles 
of fluid elements known as turbulent eddies that are 
under constant chaotic motions, collisions between 
eddies will result in local counterflow regions.  As a 
result, combustion studies on counterflow premixed 
and diffusion flames play a significant role in 
turbulent combustion modeling [3, 7-25].  This is 
because the strained induced flame stretch not only 
causes local flame extinction, but it also modifies the 
stability of the flame front surfaces [3, 7, 8, 26, 27].   
 In the present study, the hydrodynamics of 
opposed finite jets is further investigated.  It will be 
shown that a hierarchy of counterflow fields is 
encountered as the stagnation point is approached at 
ever smaller spatial resolutions.  In addition, the 
equation of  the flame front geometry that is based on   
the   Huygens   principle  [28,  29]  is   solved  to   
 
 
 

 
 
determine possible premixed flame configurations in 
opposed finite jets.  The resulting analytical solutions 
are compared with the experimental observation of 
lean methane premixed flames as well as lean and 
rich butane counterflow premixed flames.  The 
results are also found to be in agreement with the 
earlier numerical solutions of the same problem in 
the literature [30-32]. 
 

2 Scale Invariant Forms of the 
Conservation Equations  
Following the classical methods [1-3], the invariant 
definitions of the density ρβ, and the velocity of atom 
uβ, element vβ, and system wβ at the scale β are given 
as [4]  
 

ρ n m m f duβ β β β β β= = ∫
 

, uβ = vβ−1 (1) 
 

1m f d−
β β β β β β= ρ ∫v u u

 
, wβ = vβ+1 (2) 

 
Also, the invariant definitions of the peculiar and 
the diffusion velocities are given as [4] 
 

β β β′ = −V u v     ,      1β β β β′= − =V v w V +  (3) 
 

 Next, following the classical methods [1-3], the 
scale-invariant forms of mass, thermal energy,  and 
linear momentum conservation equations at scale β 
are given as [6]  
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Fig.1 Hierarchy of statistical fields for 
equilibrium eddy-, cluster-, and molecular-
dynamic scales and the associated laminar flow 
fields. 
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∂
+ = −

∂
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p v P∇. ∇.  (6) 

 
involving the volumetric density of thermal energy 

 and linear momentum .  Also, ρ hβ βε = β βvρβ β=p

βΩ  is the chemical reaction rate, is the absolute 

enthalpy [5], and  is the partial stress tensor [1] 

hβ

βP
 

β β β β β β βm (  )(  )f du= − −∫P u v u v β  (7)
  

In the derivation of (6) we have used the definition of 
the peculiar velocity (3) along with the identity 
 

i j i i j j i j i( )( )β β β β β β β β β β′ ′ = − − = −V V u v u v u u v v j  (8) 
 
The summation of (6) over all the species results in 
the classical form of the equation of motion [1, 3] 
 

t
β+1

β+1 β+1 β+1

∂
+ −

∂
p

p v ) = P∇.( ∇.  (9)
 

 

where 1 1 1β+ β+ β+= ρp v

P

 is the volumetric momentum 

density and  is the total or mixture stress 
tensor  [1, 3] 

1β+ =P

 

m ( )( )f duβ β β β β β β
β β

= = − − β∑ ∑ ∫P P u v u v  (10)
 

 
 Following the classical methods [1], the local    
velocity βv  in (4)-(6) is expressed in terms of the 

convective βw  and the diffusive  velocities [5]  βV
 
 

gβ β β= +v w V  ,    g D ln( )β β= − ρV ∇ β  (11a) 
 
 

tgβ β β= +v w V  ,    tg ln( )β β= −α εV ∇ β  (11b) 
 
 

hgβ β β= +v w V  ,    hg ln( )β β= −νV p∇ β  (11c) 
 
 
 

where (Vβg, Vβtg, Vβhg) are respectively the diffusive, 

the thermo-diffusive, the linear hydro-diffusive 
velocities. 
 Substitutions from (11a)-(11c) into (4)-(6), 
neglecting cross-diffusion terms and assuming 
constant transport coefficients with Sc Pr 1β β= = , 
result in [6]  
 

2ρ
ρ D ρ

t
β

β β β β β

∂
− ∇ = Ω

∂
+ w .∇  (12) 

 

2
p

T
T T h /(ρ c )

t
β

β β β β β β β β

∂
− α ∇ = − Ω

∂
+ w .∇    (13) 

 

2 p
t ρ ρ
β β β

β β β β
β β

β∂ Ω
− ν ∇ = − −

∂

v v
+ w v v 

∇
.∇

  
(14) 

 
An important feature of the modified equation of 
motion (14) is that it is linear since it involves a 
convective velocity βw that is different from the 

local fluid velocity βv .   Also, the last term of the 
modified form of the equation of motion (14) 
represents a source (sink) of momentum that is 
induced by exothermic (endothermic) chemical 
reaction.  
 
 

3 Symmetric Counterflow Laminar 
Premixed Flames 
The importance of combustion in stagnation-point 
and counterflow burning configurations to the 
modeling of strained flamelets in turbulent 
combustion is well recognized [3, 7-25].  Therefore, 
the objective of the present study is to understand 
the structure of two identical laminar premixed 
flames in axi-symmetric counterflow as shown in 
Fig.2. 
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Fig.2 Schematic drawing of axi-symmetric 
counterflow premixed flames. 
 

 
For cylindrically symmetric counter flow, the steady 
forms of (12)-(14) under the usual boundary layer 
assumptions and negligible pressure gradients 
become [6, 23] 
 

2
( 1)

z 2

dy d yw D ye (
dz dz

β θ−′ = − Λ δ
′ ′ fz )′  (15) 

 

 
2

( 1)
z 2

d dw ye
dz dz

β θ−θ θ′ ′= α + Λ δ
′ ′ f(z )  (16) 

 
2

( 1)z z
z z2

dv d vw v ye
dz dz

β θ−′ ′= ν + Λ δ
′ ′ f(z )  (17) 

 

 
The velocities w and v are respectively the 
convective and the local velocity and are the 
axial and the radial coordinates.  The following 
dimensionless parameters have been defined  

(z ,  r )′ ′

 

θ = (T - Tu)/(Tb - Tu) ,    y = YF/YFu,  (18) 
 

ρ = ρFu = ρYFu     ,   Λ ≡ (νFWFB/ρ) e− β/χ   (19) 
 
The adiabatic flame temperature Tb, the Zeldovich 
number β, and the coefficient of thermal 
expansion χ are 
 
Tb = Tu + QYFu/νFWFcp (20) 
 

β = E(Tb - Tu)/RTb2      ,     χ = (Tb - Tu)/Tb (21) 
 
and one assumes that  β >>1.  Also, unity Prandtl Pr 
= ν/α, Schmidt Sc = ν/D, and Lewis Le = α/D  
numbers are assumed, such that θ,  y, and v fields 
will be similar under identical boundary conditions.  
 The solutions of the system (15)-(17) outside of 
the thin reaction zone where Λ = 0 provide the 
hydro-thermo-diffusive structure of the counterflow 
premixed flame presented earlier [25] 
 

c f
11 y erfc( )
2

θ = − = ζ − ζ  (22) 

 

b
zc f c f

vv v erfc(
2

)= − − ζ − ζ  (23) 
 
 

In the following, the hydrodynamics of such 
counterflow finite jets and the geometry of premixed 
flames stabilized in such flow fields will be 
investigated. 
 
4 Hydrodynamics of Cylindrically 
Symmetric Counterflow Finite Jets 
The solution of the modified equation of motion for 
the classical problems of laminar axi-symmetric 
stagnation-point flow and counterflow jets were 
discussed in a previous study [24].  It was shown that 
the flow field outside of the thin boundary layer 
must be determined at the scale of LED with the 
relevant “atomic”, element, and system velocities (ue, 
ve, we) and the associated length scales 

. The convective 
velocity for this outer flow is known and given by [2] 

e e
5 3 1

e , ,(l  ) m10 10  L 10− − −λ= = =  

r
 

re ew′ ′= Γ  ,        ze ew 2 z′ ′= − Γ   (24) 
 
where the velocity gradient is the ratio of the jet 
velocity at the nozzles w'zo and the thickness of the 
hydrodynamic “boundary layer”   fδ
 

e zeow /Γ = f′ δ      (25) 
 
to be further described in the following.  The 
subscript (e) refers to the laminar eddy-dynamic 
(LED) scale β = e and the relevant kinematic 
viscosity for this scale is νe = leue/3 = λcvc/3 [5]. One 
also introduces the dimensionless velocities  
 

ze ze e e( ( ′ ′ ′ ν Γre ze re zev v w v v w, , ) = , , )/  (26) 
 

and coordinates 
 

e e er / /′ξ = ν Γ   ,   e e ez / /′ζ = ν Γ

e

   (27) 
 

  The solution of (17) in the absence of reaction 
and with the convective velocity (24) under the 
appropriate boundary conditions was shown to 
result in the stream function [24] 
 

2
e e erf ( ) Ψ = − ζξ  (28) 

 

and hence the velocities 
 
 

ze ev 2erf ( )= − ζ  (29) 
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2
re e ev exp(

2
= − )ζξ

π
 (30) 

 

The axial and radial velocity profiles calculated from 
(29)-(30) are shown in Fig.3 and are in qualitative 
agreement with the experimental observations in 
Fig.8 of Tsuji and Yamaoka [16]. 
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Fig.3 Calculated velocity profiles for axi-
symmetric finite-jet counterflow (u = vre, v = vze) 
from (29)-(30). 
 

 Some of the streamlines calculated from (28) 
are shown in Fig.4.   
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Fig.4 Calculated streamlines from (28) for axi-
symmetric opposed finite jets. 
 

 
 

According to (28), the jets do not diverge until they 
reach the position of the hydrodynamic "boundary 
layer" (Fig.4) that corresponds to the inner scale 

cζ → ∞  (Fig.3).  The thickness of the boundary 
layer at LED scale is obtained from the solution (28) 
as the location  where the streamlines no 
longer change with ζ to an accuracy of 0.9995  [24] 

e 2.4∗ζ

 

e
f e

e

L 2.4 ν
δ =

Γ
 (31) 

 
in exact agreement with the classical result [2].   
  The choice of 2.4 in (31) was to show the close 
agreement with the classical exact numerical 
solution of the Navier-Stokes equation [2].  
However, to facilitate the scaling problem discussed 
below the choice of  will be made that 
defines the edge of boundary layer to the accuracy 
of 0.995.  At  the axial velocity at the edge 

of the boundary layer 

e 2.0∗ζ ≈

e 2.0∗ζ ≈

zev ∗′  from  (29) will be 
 

ze e ev 2∗′ = − Γ ν  (32) 
 
With the definition of the stretch rate as 
 

o
e

e f

w w
L

= o′ ′
Γ =

δ
 (33) 

 
one obtains from (32) 
 

e
ze o

o e e

v 1 2
2/ w

w L Re
∗′ =

ν′ =
′

 (34) 

 
resulting in the Reynolds number 
 

o e
e

e

w LRe 4
′

=
ν

 (35) 

 

Also, with e 2∗ζ ≈  the edge of the boundary layer 
(31) will be modified as   
 

e e e
e f

o e

L LL 2 2
w Re

ν
= δ ≈ =

′
 (36) 

 
that is in accordance with  (35).  
  As the streamlines in Fig.4 show, the important 
hydrodynamic length is the thickness of the 
boundary layer fδ  rather than the separation 
distance between the nozzles L, as long as .  
This is to be expected since beyond this boundary 
the streamlines are parallel and no longer change 
(Figs.3, 4) and the position of burner nozzles has no 
impact on the hydrodynamic problem. The Reynolds 
number may be expressed as the ratio of outer to 
inner length scales 

fL > δ
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e o e e f
e

e e o e e

L w L LRe 4
( / w )

′ δ
= = = =

′ν ν δ δ
 (37) 

 
where the inner length scale is defined as 
 

e e / w′δ = ν o  (38) 
 
and represents the characteristic length for diffusion 
of momentum.  The approximate scaling factor of 4 
between the outer and the inner hydrodynamic 
lengths (36) was also arrived at in the earlier 
investigations [6, 24, 25]. 
 In the neighborhood of the stagnation point, 

e 1ζ and  the solutions (29)-(30) lead to e 1ξ
 

ze e
4

v = −
π

ζ  , re e
2

v  (39) = ξ
π

 
that in view of (26) and (27) could be expressed as 
 

ze zc e c

4
v w z 2 z

π
′ ′ ′= = − Γ = − Γ ′  (40) 

 

e
re rc c

2v w r rΓ′ ′ ′= = = Γ
π

′  (41) 

 
when one has introduced the following new 
definition 
 

c e
2

Γ =
π

Γ   (42) 

 
for the stretch rate at LCD scale. 
 The local velocities (v're, v'ze) at LED scale in 
(40)-(41) also represent the convective velocities 

for the next lower scale of LCD  rc zc(w , w )′ ′
 

rc cw′ = Γ r′ z′

 

    ,      (43) zc cw 2′ = − Γ
 
that have the same form as the velocity of the outer 
flow (24).  The flow within the thin viscous boundary 
layer at LCD scale will have the length scales 

.  One can 
therefore introduce the new coordinates  

c c
7 5 3

c , ,(l  ) m10 10  L 10− − −λ= = =

 

c cr / /′ξ = ν Γc     ,     c cz / /′ cζ = ν Γ    (44) 
 
with the new stretch rate cΓ defined in (42).  The 
solution of the equation of motion (17) at this smaller 
scale of LCD with the convective field (43) and 
under the same boundary conditions as those of the 
outer flow will be identical to (28)-(30). 

 The above result is also supported by the fact 
that near the stagnation point of counterflow jets, 
because of the viscous effects, a small region of 
secondary flow recirculation will be established.  
Such a flow field is formed by two semi-spherical 
“Hill vortices” obtained from the exact solution of 
the dimensionless modified Helmholtz vorticity 
equation [33, 34] 
 

r
r z

θ θ θ∂ω ∂ω
+ = −

ω
∂ξ ∂ζ ξ

ww w  
 

              
2 2

2 2

1
2

θ θ θ θ⎡ ⎤∂ ω ∂ω ω ∂ ω
+ + − +⎢ ⎥∂ξ ξ ∂ξ ξ ∂ζ⎣ ⎦

 (45) 

 
given by the stream function  
 

2 2(1 )2Ψ = ξ ζ − ξ − ζ     (46) 
 

Some of the streamlines from (46) along with the 
streamlines for counterflow jets from (28) are shown 
in Fig.5 where the diameter of the spherical flow 
region is exaggerated for clarity. 
 
       ζ 
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           ξ 
 
Fig.5 Spherical flow recirculation zone near the 
stagnation point of viscous counter flow [34]. 
 
The actual radius of this zone eer /∗ = ν Γ will 
depend on the fluid kinematic viscosity and the 
stretch rate [34].   
 Examination of Fig.5 shows that the streamlines 
near the origin are identical to those of the outer 
cylindrically symmetric counter flow jets in 
accordance with the suggestion made above.   
Therefore, in view of the linearity of (45), one 
obtains a product solution for two concentric 
spherical flows with radii  given by [34] 1 2(R , R )
 

4 2 2 2 2 2
1 2 1 2(R )(R )Ψ = Ψ Ψ = ξ ζ − ξ − ζ − ξ − ζ (47) 
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The direction of rotation of the adjacent generations 
of such concentric spherical flows will alternate [34].  
Such a hierarchy of concentric spherical flows also 
suggests that one should expect a cascade of self-
similar, fractal, counterflows at scales LCD, LMD, 
LAD, …(Figs.1, 5) as the stagnation point is 
approached at ever-smaller spatial resolutions.   
 The central significance of the above results is in 
connection to the important problem of turbulent 
dissipation addressed by Heisenberg [35].  Since 
Richardson’s well-known rhyme concerning big and 
little eddies, turbulent fluctuations are generally 
assumed to carry motions from the large integral 
scales down the Kolmogorov dissipative scale.  
However, no clear mechanism for transfer of 
vorticity across such cascades of scales has been 
identified.  Because turbulent flows are composed of 
eddies whose collisions generate local counterflows, 
the formation of hierarchy of concentric spherical 
flows at the stagnation regions of such counterflows, 
Fig.5, could be considered as a mechanism for 
transport of vorticity to the dissipative scales.  
 The above results are also harmonious with the 
scale-invariant logarithmic definition of coordinates 
that was recently introduced [36] where the 
coordinate at scale β is related to that at the lower 
adjacent scale β −1 as schematically shown below 
 

    

∞β + 1 1β + 1 0β + 1 − 1β +1

0β 1β ∞β − ∞β − 1β 

− ∞β +1

λβ +  1  = π
2 β 

λβ = π
2 β -  1

 
 
 

Fig.6 Hierarchy of normalized coordinates for 
cascades of embedded statistical fields [35]. 

 
In view of Fig.6, the range  of the outer 

coordinate x

( 1 ,1 )β β−

β will correspond to the range 
 of the inner coordinate  while 

the zero of the higher scale 
1 1( ,β− β−−∞ ∞ ) 1xβ−

( 0 , 0 )β β− +  
decompactifies to the unity  of the 
lower scale as shown in Fig.6. The analogy 
between the hierarchy of counterflow finite jets 
shown in Fig.3 and the hierarchy of embedded finite 
interval  on a line shown in Fig.6 thus 
provides a physical basis for the invariant model of 
analysis described earlier [36].  The analogy is 
further enhanced by the fact that the solution of the 
velocity field (29) involves Gauss’s error function 

that also formed the basis for the “measure” 
employed for the normalization of coordinates [36]. 

1 1( 1 ,1 )β− β−−

( 1 ,1 )β β−

  
6. Geometry of Counterflow Finite-Jet 
Premixed Flames 
The equation that governs the dynamics of the 
premixed flame geometry has been investigated on 
the basis of Huygens principle [28, 29].  In this 
section, possible flame configurations for premixed 
flames stabilized in counterflow finite jets will be 
examined.  Some typical direct photographs of flame 
taken by the author are shown in Fig.7a-7c.  
 

            
                                  (a) 
 

             
                     (b) 
 

 

             
                     (c) 
 
Fig.7 Premixed flame geometries in opposed finite 
jets (a) symmetric lean premixed flames (b) lean 
and rich butane-air premixed flames separated by 
a diffusion flame (c) lean and rich butane-air 
premixed flames with the latter flame showing 
cellular instability. 
 
The flame geometry will depend on the relative 
magnitude of the jet axial velocity at nozzle w'zo 
versus the laminar flame propagation velocity v'f, and 
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the rate of stretch (23) that also depends on the 
axial velocity at the nozzles (Figs.2, 4). 

eΓ

 The geometry of the premixed flame stabilized 
in the vicinity of the stagnation point can be 
obtained from the equation [28, 29] 
 

f
G G v G
t

∂
= ∇

∂
+ w.∇  (48) 

 
The flame surface is expressed as 
 
G g( ,= ξ − t)ζ  (49) 
 
that involves the dimensionless quantities 
 

eG G /′= Γ α     ,      eg g /′= Γ α  (50) 
 
and the laminar flame propagation velocity 
 

f f ev v /′= Γ α  (51) 
 
 The unit vector normal to the flame surface and 
the convective velocity field are given by 
 

2

ˆ ˆgG
G 1 g

ζ

ζ

ξ − ζ
= − = −

∇ +
n ∇

    
(52) 

 
 
ˆ 2= ξ ξ − ˆζζw  (53) 

 
For the steady flame configuration, by substitution 
from (49)-(53) one obtains from (48) 
 

2
2 2 2 2

f f
g g(4 v ) 4 v 0⎛ ⎞ ⎛ ⎞∂ ∂

ζ − + ξζ + ξ − =⎜ ⎟ ⎜ ⎟∂ζ ∂ζ⎝ ⎠ ⎝ ⎠
 (54) 

 
 
The above nonlinear equation has a closed form 
analytical solution  
 

2 2 B 4g ln(4 B ) Arc tan
4
ξ ζ⎧ ⎛= − ζ − ± ⎨ ⎜ ⎟∆ ∆⎩ ⎝

⎞

⎠
 

 
2 2

2 2

R t B
ln

4 R t B

⎫⎡ ′ ′ξ + ξ +ξ ⎤⎪− ⎢ ⎥⎬
′′ ′′ξ + ξ −⎢ ⎥⎪⎣ ⎭⎦

 (55) 

 
 
Substituting from (55) in (49) gives the flame 
surface geometry as 
 

2 2 B 4G( , ) ln(4 B ) Arc tan( )
4
ξ ζ

ξ ζ = ξ − ζ − +
∆ ∆

 

  

                
2 2

2 2

R t B
ln

4 R t B

⎡ ⎤′ ′ξ + ξ +ξ
− ⎢ ⎥

′′ ′′ξ + ξ −⎢ ⎥⎣ ⎦
 (56) 

 
The following definitions have been introduced  
 

2 24( B )∆ = ξ −  (57) 
 

2 2R 1 2Bt t′ ′ ′= + + ξ  (58) 
 

2 2R 1 2Bt t′′ ′′= − + ξ ′′  (59) 
 

1t =
2 B

′
ζ −

     ,         
1t

2 B
′′ =

ζ +
 (60) 

 

along with the important parameter representing the 
dimensionless flame propagation velocity  
 

f

e

vB
′

=
Γ α

 (61) 

 
where α is the thermal diffusivity that is assumed to 
be equal to the kinematic viscosity under the unity 
Prandtl number α = ν  assumption being adopted.  
 The calculated flame geometry from (56) are 
shown in Fig.8 for a typical dimensionless flame 
propagation speed B = 0.02.   
 
         ζ 

         -2 -1 0 1 2

-0.75
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-0.25

0

0.25
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0.75
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Fig.8 Possible geometry of premixed flame 
surfaces in symmetric opposed finite jets. 
 
The sharp edges at the crossing of the conical 
funnel-shaped flame and the planar flame in Fig.7b 
are optical path effects of the flame photograph.  
The particular flame shape involving a hole when 
the upper and lower planar flame surfaces join near 
the jet axis of symmetry leaving a small hole in the 
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vicinity of the stagnation point was first reported in 
a direct photograph by Ishizuka and Law [19].  For 
the case of rich butane-air flames, the outer conical 
flame can become thermo-diffusively unstable and 
assume the shape of a polyhedral flame as shown in 
Fig.7c. 
 For the solution (56) to be physically 
meaningful, involve real rather than imaginary 
numbers, one must impose the requirements  
 

2 Bξ > 2 2 , 24 Bζ >  (62) 
 

Therefore, there will be a forbidden zone in the 
vicinity of the stagnation point within which the 
flow velocity is everywhere smaller than the flame 
speed and hence cannot support a stable and 
stationary flame front in accordance with the 
previous studies [30-33].  The size of the hole will 
be a function of the flame propagation velocity and 
the stretch rate . f e(v , )′ Γ
 
8 Concluding Remarks 
Scale-invariant forms of the conservation equations 
were solved for the problem of counterflow finite 
jets.  It was shown that the solution suggest the 
occurrence of a hierarchy of counterflows at ever-
smaller scales as one approaches the stagnation point.  
Also, an analytical solution for the geometry of 
counterflow premixed flames stabilized in finite jets 
was presented.  In view of the predominance of 
locally strained counterflows in turbulent fields, the 
understanding of the various flame configurations in 
such flows will play a central role in the future 
comprehensive models of turbulent combustion. 
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