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Abstract.  The paper presents an iterative method for the computation of the displacements of the supports for 
movable control surfaces of an airplane (elevator, rudder, aileron), which are attached at N-points to an elastic 
structure. The reactions that act in these points are computed using the finite element method and the materials 
strength computing techniques that relies on the interaction between the rigidity of the supporting and the 
movable structures. 
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1  Introduction 
  

The movable control surfaces of an airplane, namely 
the elevator, the rudder and the aileron are attached 
to N-points to stabilizer, fin and wing, respectively. 
These supporting surfaces are usually cantilevers 
with variable moment of inertia, carrying the air 
loads that determine the deflections of the structure 
and hence, the displacements of the supporting points 
of movable structure. With the help of an iterative 
method we find the reaction forces in the attachment 
points. In the step 1 we find the displacements of the 
cantilever by the finite element method and then, 
using the techniques of the strength materials, we 
find the reactions in the supporting points of the 
movable structure subjected to external loads. 

For a correct structural response we determine 
by the step 2, the deflections of the supporting 
surfaces under the combined action of air loads, 
reaction forces in the attachment points obtained by 
the step 1. With the new settling of supports, we 
repeat the calculation of the reactions as to the step 1. 

Numerical example shows that this iterative 
method is rapidly converging. 

 

 
2 Modelling and formulation 

 
Step 1 
 
Supporting structure 
 
The primary function of any structure is to support and 
to transfer externally applied loads to the reactions 
points when is subjected to some specified constraints. 
In the matrix structural analysis an important step is 
the formulation of a discrete-element mathematical 
model equivalent to the actual continuous structure. 
      Let us consider the following the general 
assumptions:  
- displacements of the structural element are not very 
large and the geometry of the system is well defined 
before the analysis is attempt; 
 - displacements and stains of the loaded structure are 
small and hence, linear elasticity theory applies. 
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Fig. 1 
 

 
       A cantilever beam with the nodes 0,1,2,3,4 idealizes 
the support structure. The node zero corresponds to the 
fixed point; the points 1,2, and 3 correspond to the 
support points of the movable structure. The applied 
loading consists of the transverse forces, which are 
equivalent with the trapezoidal loading from the Fig.1. 
Since are applied only the transversal forces, we have a 
two dimensional problem. The beam element will be 
assumed to be a straight bar of uniform cross section 
capable of resisting axial forces S1 and S4; shearing 
forces S2 and S5; and bending moments S3 and S6. 
 
 
 

 
  
 
 
 
 
 
 
 
 
 
   Fig.2 
 
 
        
       Let us consider that the moment of inertia Iz and the 
cross-sectional area A of the beam element of the length 
l are constantly. Within each element (i), the stresses are 
equilibrated by a set of element forces Sk in the direction 
of the element displacements uk
        In the local coordinate system (Fig. 2), the stiffness 
matrix for a beam element (i) bounded by the nodes N1, 
N2 is of the form 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−

−
⋅=

l
I

l
I

l
I

l
I

l
I

l
I

l
I

l
A

l
A

l
I

l
I

symmetric
l

I
l
A

Ek i

460260

1206120

00

460

120

22

323

2

3

)(  

 
where E is the Young’s modulus. 
       The rigidity matrix  may be rewritten in the 
following form 
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where each matrix kij is defined by a 3×3 block. For an 
element (i), the local forces from the Fig. 2 are denoted 
by and the corresponding displacements by . 
These are related by the matrix equation 

)(i
kS )(i

ku

                                             (1) )()()( iii ukS =

for each element separately. For the complete structure, 
all these equations can be combined into a single matrix 
equation of the form 

                                S = ku                  (2) 

where { })3()2()1( ,, SSSS = , { })3()2()1( ,, uuuu =  and  
{ })3()2()1( ,, kkkk =  for the elements: 0-1; 1-2 and 2-3 

(Fig.1). Let us now define a matrix of displacements for 
the assembled structure 
                           { }321

~~~ UUUOU =      (3) 
where each block { }kkkk VUU Θ=

~  with 
Uk the displacement corresponding to the forces S1; 
Vk the displacement corresponding to the forces S2;  
Θk the displacement corresponding to the forces S3. 
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These components are defined with respect to the datum 
coordinate system XOY and the block O corresponds to 
the fixed node O. 
 
If   { })(
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are the matrices of the displacements of the node N1 and 
the node N2, respectively, for the element (i), we have 
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or 
  u = AU        (5) 
 
The external loading, which correspond to the 
displacements U is denoted by the matrix F, such that   
             

                        (6) { 321 FFFFF R= }
 
where the components of the block Fk represent the 
external forces in the direction of the components of the 
displacements block kU~  and FR the reaction forces from 
the fix point O.  To relate the external forces F to the 
corresponding displacements U, we use the principle of 
virtual work, [3], [8], which states that an elastic 
structure is in equilibrium under a given system of loads, 
if for any virtual displacements δu from a compatible 
state of deformation u, the virtual work is equal to the 
virtual strain energy. Finally, we obtain the matrix 
equation 
 
 

Movable structure 

 
 

      F = KU               (7) 

where                    K = At  k A         (8) 
 
Using (4) and (5) we obtain the stiffness matrix K for the 
complete structure (regarded as a free body) of the form 
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In the matrix (6), FR is the column block that contains 
the reaction forces from the O point. Therefore, K is a 
singular matrix. In order to calculate the displacements 

  { }321
~,~,~ UUUU A =         (10) 

in the active forces directions 

                          { }321 ,, FFFFA =                            (11) 

we partition the matrix K  in the form 
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From the system (12), the matrices UA and  FR can be 
obtained with the following relations 
 
                                       (14) AAAA FKU ⋅= −1

                                      (15)A
t
ARR UKF ⋅=

 
 
        
 
 
  

                    Fig. 3 
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     Fig.5  
 

 
   Fig. 4 
 
       
In the figure 3 is presented a rudder beam attached to a 
deflecting fin structure at the 3 points, where support 2 
corresponds to the maximum displacement U. Using the 
definitions of the elements of the matrix U from (3), we 
find the vertical displacements yi of the supports 1, 2 and 
3 (Fig. 3): .  142332 ,, VyVyVy ===

Let us now determine the bending moment at the 
supports under the combined action of transverse 
loading and of the support settling. For a member 
bounded by two end joints, the end moments can be 
expressed in terms of the end rotations. Furthermore for 
static equilibrium, the sum of the end moments on the 
members meeting at a joint must be equal to zero. With 
the help of these equations of static equilibrium, the 
unknown joints rotations and the end moments can be 
computed. Finally, the reactions in the supports are 
found. At the beginning, the following values will be 
evaluated (Fig. 3 and Fig.4).  

a) The swing of  the member  i ÷ i +1: 
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b) The moments due to any applied loads on the 
beam, when considered as fixed ends 
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For sign convention: the rotation of a joint or a member 
is positive, if it turns in a clockwise direction; the end 
moment is considered positive if it tends to rotate the 
end of the member clockwise or the joint counter 
clockwise. 
c) The moments in the i – point due to distortion of the 
supports, [2] are 

 
 

 
                    Fig.5 
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For static equilibrium of the joint i :  0)1(
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and using (25), the following system is obtained 

FK =⋅ θ                    (20) 
where 
                        { }432 ,, θθθθ =  
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and the stiffness matrix is of the form  
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Solving the (20) for θ   we obtain the bending moments 
at the supports by (18) and (19). With the help of the 
material strength computing techniques, we get the 
following matrix relation for find the corresponding 
support reactions ( )1

kR , k = 2, 3, 4: 
 

 

   θi 

yi 

 yi+1 

φi 

θi+1

Mi+1 

   Mi 

 ri 
 
 pi

        li 

                   i                i+1                    li 

Proceedings of the 5th IASME / WSEAS International Conference on Fluid Mechanics and Aerodynamics, Athens, Greece, August 25-27, 2007      132



⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−

−

+

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+

+

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

6

2
44

3
6

2
11

3

1

3

10
3

1

3

1

2

1

2

1

0
2

1

2

1

4
3
2

6
3243

6
30

6
3

3
32

6
2

0
6
2

6
2213

)1(
4

)1(
3

)1(
2

lp

M

lp

ll

llll

ll

p
p
p

lll

llll

lll

R

R

R

(22)  

 
where M3 = M3,4 and by  we denote the reaction 
from the support k at the step 1. The loading p

( )1
kR

k 
(daN/cm) is the value of this that corresponds to the 
support point k. 
 
Step 2 
       We consider now the deflecting supporting 
structure loaded with the air loads as well as with the 
reactions determined by the step1. Using the 
superposition principle that sum up the individual 
effects of every load, which acts upon a structure, we 
can obtain the displacement functions for the supports. 
The displacements corresponding air loads were 
computed in the step 1 and now we have to concentrate 
on the displacement caused by the three reactions, ( )1

kR  
(fig.6). We denote: 
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Using the relation (14), where FA is defined for the 
loading defined by (23), we find the new 
displacements  of the supports. Finally, 
we compute the displacements that corresponding to 
the step 2 with the formula 

3,2,1, =′ kVk

              3,2,1=′+=  , kVVv kkk    
 
 
 
     0 
 
 
                             Fig. 6 
 

The vertical displacements of the supports accordingly 
with (14) are 
               142332 ,, vyvyvy ===  
The new reactions  are evaluated with 
the matrix relation (22).  
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      The iterations cease if 
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where ε  is a given small number. 
 
3 Numerical example 
 

Supporting structure 
 

        Let us consider the moment of inertia of the fin,  
Iz = 3325 cm4 and the modulus of elasticity of the 
material, E = 735000 daN/cm2. The air load on the fin 
is shown in the Fig.7. Using the finite element method 
we obtain: 
         161.01 =V cm; cm;983.02 =V 122.23 =V cm  
from the relation (14). 

 
 
 
 
 
          Fig. 7 
 
Movable structure 
 
       Let us now consider a rudder (Fig.3) with: l1=14 
cm;   l2 = 77cm; l3 = 73 cm, l4 = 20 cm,   p1 =3 daN/cm,             
p2 =11.2 daN/cm and using the values Vi, we get 
y2 = 2.12 cm,   y3 = 0.983 cm,   y4 = 0.161 cm. From 
(17) we have 

         daNcmm 2668
60

)4335(772

2,3 =
⋅+⋅
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60

)4235(772

3,2 −=
⋅+⋅

−=  

         daNcmm 3855
60

)2.4275(732

4,3 −=
⋅+⋅
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Te beam has a constant section, hence we get 
K2 = EI/l2 = 315000 daNcm; K3 = EI/l3 = 453082 
daNcm. 
 
Span 2 – 3 
 
The settlement of support 2 with respect to support 3, 
Δ2 = 2.12 – 0.98 = 1.14 cm and 

                                                       )1(
4R )1(

3R )1(
2R

    1        2    3                                                                                 

  40 cm                   73 cm                               77 cm 
 
0               1                            2                                    3 

p = 30 daN/cm  
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Since the joint 2 turns in counterclockwise with respect 
to 3, the sign of φ is negative. 
 
Span 3 – 4 
      Δ3 =  0.98 – 0.16 = 0.82 cm   and 
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3
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The moment  and  from 
the static equilibrium of joint 2, 

daNcm983142112 =⋅= /M ,

1,232 MM , −= . 
Substituting in equations (18) and (19) we get 
 
        3,2232232 )32(2 mKM , +−+= φθθ     

227329484630000126000098 32 −++=− θθ  
 
For static equilibrium of joint 3,  M3,2 + M3,4 = 0, where 
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3855)32(4530822 3434,3 −⋅++⋅⋅= φθθM          (26)  

 
Finally, for static equilibrium of joint 4 
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We find the following values: θ2 = -0.014 rad;            
θ3 =  -0.012 rad; θ4 = -0.012 rad and from (26),          
M3 = - 8585 daNcm, M2 = -98 daNcm  and M4 = - 747 
daNcm. Finally, the reactions from the support points 
have the values:  daN;31.107)1(

2 =R daN;3.695)1(
3 =R

daN.2.394)1(
4 =R  

The displacement Vk of a support k due to the 
air load on the fin must be added now to the 
displacement   due to the forces , ,  
determined in step 1. We calculate the displacements 

, k = 1,2,3 of the support points by (14) for the 

reactions and get the following values: 

kV ′ )1(
2R )1(

3R )1(
4R

kV ′′

3,2,1,)1( =kRk

046.01 =V cm;    297.02 =V cm;     652.03 =V cm. 
Using the superposition principle, the supporting 
points of the movable control surface are displaced 
with the values: y2 = 2.12 + 0.65 = 2.77 cm,              
y3 = 0.983 + 0.297 = 1.28 cm and y4 = 0.161 + 0.046 = 
0.207 cm. With these new, yi, we repeat the calculation 
of the reactions as to the step 1 for the movable 
structure. 
 
 
4 Conclusions 
  
The proposed analysis allows us to find with a great 
accuracy the reactions in the attachment points of the 
movable surfaces to the support beam. Thus, theirs 
fittings will be calculated correctly. This algorithm is 
applicable for structures of variable bending rigidity 
and loaded by various types of external forces and 
may be easily generalized for N- supports points. Also, 
it reduces the number of equations to be solved 
simultaneously and it presents equations that easily 
and rapidly formulated. 
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