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Abstract: - In this second part of paper the description of conservative averaging method for partial differential 
(or integro-differential) equation with discontinuous coefficients in cylinder type domain is given. The 
conservative averaging is carried out in two orthogonal directions. Different types of boundary conditions are 
examined.  
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1   Introduction 1{( , ) : [0, ] } nD x y x H G R +

In praxis very often important mathematical models 
consist of partial differential equations (PDE) with 
discontinuous coefficients [1]-[3]. They describe 
various physical processes in piecewise 
homogeneous media, e.g. in layered structure. 
Conservative averaging as special analytical (or 
analytically-numerical) method was developed for 
partial differential equations with discontinuous 
coefficients in layered media. In part 1 of this paper 
we extended the method of conservative averaging 
for partial differential (or integro-differential) 
equations with continuous coefficients in cylindrical 
domain. Here we generalize our investigation for the 
situation when base of cylinder consists of two sub-
domains, i.e. the main equation has discontinuity its 
coefficients on the cylindrical domain. The 
conservative averaging here is realized in two 
orthogonal directions. Thus this paper generalizes 
the results of paper [4] in two senses. Firstly, we 
realize averaging in two directions. Secondly, we 
consider different types of boundary conditions 
(BC) for generalized main PDE. 
 
2    Conservative Averaging Method 
for Two-layer Cylinder Type Domain 
We will start with the statement of problem for finite 
cylinder type domain. 
 
2.1 Original Problem 
We will consider the cylinder type domain , 

where

D

= ∈ × ⊂

G D

2( , ,..., ) n
ny z y y G R= ∈ ⊂

. Here 

the basis  of the cylinder  is bounded (or 

unbounded) domain . 
The closure of the domain (base) is represented as 

union of two closed sub-domains 0G G G= ∪

0G
. The 

sub-domain  is the cylindrical domain of finite 
height δ : 

, 

where

1
0 2 0{ ( ,0)} { ( ,..., ) }n

nG z y y y Gδ −= ∈ − × = ∈
1 1

0
n nG R− −⊆

1{ 0} nG z G −= > ×
0z >

z
0 0{ (0, )}D x H G

 is bounded or unbounded 
domain. The definition of the sub-domain is 
following: . Here with notation 

 we understand that the domain G is located 
on the right from domain G0 relatively the 
coordinate . Accordingly are defined the sub-
domain = ∈ ×

{ (0, )}D x H G
 and the second 

sub-domain = ∈ ×

0D D
. Shared border-

hyper plane between domains  and  we denote 
as H: 

{ }0: ( , , ) : 0H D D x z y D z∩ = ∈ == . 

Right border of the domain G0 we denote as H0: 
{ }0 0( , , ) :H x z y D z= δ∈ = −

0z
. 

Sometimes we will use short notation =  
and z = δ−  for hyper planes H and H0. 
As in first part of this paper one of 
components 2 ,... ny y  again could be time variable .  t
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The main equation in the sub-domain  for the 
solution (function ) in general form looks 
as follows: 

0D

0 ( , , )U x z y

( )

0 0
0 0

0
0 0 ( , , ).

U Uk k
x x z z

L U F x z y

∂ ∂∂ ∂⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝
= −

⎠     (1) 

Here the linear differential (integral or integro-
differential) operator  is operator concerning to 
vector argument

0L
y with coefficients related to the 

same argument (and concerning argument x  for the 
first averaging procedure, acting in the direction; 
see sub-section 2.2). 

z −

Accordingly the main equation in the sub-
domain for the solution is: D ( , , )U x z y

( ) ( , , ).

U Uk k
x x z z

L U F x z y

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
= −

    (2) 

On the hyper-plane H between both sub-domains 
the conjugation conditions are given: 

0 0z z
U U

=− =+
=

0
, (3) 

0
0

00 zz

U Uk k
z z =+=−

∂ ∂
=

∂ ∂
. (4) 

On border H0 the boundary condition in general 
form is written: 

00
0 0 0 0 ( , )

z

Uk U
z δ

ν λ ϕ
=−

∂⎡ ⎤− + =⎢ ⎥∂⎣ ⎦
x y . (5) 

At this moment it is not necessary to concretize the 
boundary conditions on the rest of the borders:  

( ) ( , , )l U x z y= Ψ , 0( , , ) \x z y D D H∈∂ = ∂ . (6) 
Here we have introduced the function 

which is equal the function 
on sub-domain

( , , )U x z y

0 ( , , )U x z y 0D  and the function 

 on the sub-domain( , , )U x z y D . 
 
2.2 Transformation of the Original Problem 
by Conservative Averaging According to the 
Coordinate   z
We will transform the original problem (1) – (6). As 
in the part 1, to make difference between these two 
problems clearer, we denote the new solution of the 
equation (2) as  instead of the original 
solution .Then the main equation (2) on 
the sub-domain

( , , )u x z y
( , , )U x z y

D  looks as follow:  

( )

( , , ), ( , , ) .

u uk k L
x x z z
F x z y x z y D

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ u+ + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
− ∈

 (7) 

We introduce integral averaged function in 
direction : z

0

0 0
1( , ) ( , , )u x y U x z y dz

δδ −

= ∫ . (8) 

As the first step we integrate the main equation (1). 
This gives exact equality: 

( )00
0 0

0
0

0 0

0
1

0 0

( , ),

( , ) ( , , ) .

z

z

uk L u
x x

Uk f x
z

y

f x y F x z y dz

δ

δ

δ δ

δ

δ

=−

=−

−

−

∂∂ ⎛ ⎞ + +⎜ ⎟∂ ∂⎝ ⎠

∂
= −

∂

= ∫

 (9) 

We shall call this equality principal relation. Again 
(as in part 1) principal relation is underdetermined 
equation because of presence of two different 
functions:  and   in one equation 
(9). It means that connection between these 
functions must be established. Next steps in our 
approach (method) depend on two factors: 

0 ( , )u x y 0 ( , , )U x z y

1) Assumption about the behavior of the 
function in direction at 
fixed

0 ( , , )U x z y z −
( , )x y ; 

2) The concrete type of the BC on the hyper-
plane . 0H

The simplest assumption regarding the behavior of 
the function  is: the function is weakly 
depending on variable . Then we can assume 
following sequence of equalities: 

0 ( , , )U x z y
z

0 0( , , ) ( , )
( ,0, ) ( ,0, ).

U x z y u x y
U x y u x y

≅ ≅
≡

               (10) 

Let it be given the second type of BC on : 0H

00
0 ( , )

z

Uk x
z δ

ϕ
=−

∂
− =

∂
y .              (11) 

The principal relation (9) by means of second 
conjugations condition (4) immediately gives the 
following equation: 

( )0
0

0

0
0( , ) ( , ) .

z

u uk k L
z x x

x y f x y

δ δ

ϕ δ
=

∂ ∂ ∂⎛ ⎞ u+ + =⎜ ⎟∂ ∂ ∂⎝ ⎠

⎡ ⎤− +⎣ ⎦

                 (12) 

This equation is independent from argument  and z

Proceedings of the 5th IASME/WSEAS Int. Conference on Heat Transfer, Thermal Engineering and Environment, Athens, Greece, August 25-27, 2007   23



contains the term
uk
z
∂
∂

 at hyper-plain . That 

means we can consider equation (12) as non-
classical BC (given on

0z =

H ) for main equation (7).  
The approximation of the solution  
in direction by linear function 

0 ( , , )U x z y
z −

0

0
0

( , )( , , ) ( ,0, )
( )
x yU x z y u x y x

k y
ϕ

= −  

leads to similar to equation (12) transformed BC 
(the difference between both formulae is in the right 
hand side terms; approximation by linear function 
instead of constant gives last two additional terms): 

( )0
0

0

2 2 0 0
0 0

0 2
0

( , ) ( , ) .
2

z

u uk k L u
z x x

x y f x y L
x k

δ δ

δ ϕ ϕϕ δ

=

∂ ∂ ∂⎛ ⎞+ + =⎜ ⎟∂ ∂ ∂⎝ ⎠

⎧ ⎫⎡ ⎤⎛ ⎞∂⎪ ⎪− + + +⎨ ⎬⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

 

We can use the second order polynomial for the 
more accurate approximation of the 
function  0 ( , , ) :U x z y

2

0 1( , , ) ( ,0, ) ( ) ( )z zU x z y u x y u y u y
δ δ

⎛ ⎞= + + ⎜ ⎟
⎝ ⎠

2 . 

Such approximation finally gives the system of two 
BC on H  for equation (7) (see [4] for details):    

( ) ( )

( )

00 0
0 0

0
0

0
0

00
0

3

3 ,
2

3 ,
2z

z

k uu u k L u
x x

f

kuk u u
z

δ δ
δ

ϕ δ

ϕ
δ =+

=+

⎧ ∂∂ ⎛ ⎞− + +⎪ ⎜ ⎟∂ ∂⎝ ⎠⎪
⎪⎪ ⎛ ⎞− +⎨ ⎜ ⎟

⎝ ⎠⎪
⎪ ∂

= − +⎪
∂⎪⎩

0 =

 

or, in other form: 

( ) ( )

( ) ( )

0 00
0 0

0
0

00
0

,

3 . 1
2z

z

uuk k L u
z x x

kuk u u
z

δ δ ϕ

ϕ
δ =+

=+

⎧ ∂∂ ∂ ⎛ ⎞+ + = − +⎜ ⎟⎪ ∂ ∂ ∂⎝ ⎠⎪
⎨

∂⎪ = − +⎪ ∂⎩

0

3

fδ
                  

The system of BC (13) can be reduced to one 
equation by excluding the averaged 
function : 0 ( , )u x y

( )0
0

0

2 0
0

0 0
0

3

.
6

u k uk k u L
z x x k z

f k
x x k

δδ

δ ϕϕ δ

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂
+ − +⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦
⎧ ⎡ ⎤⎛ ⎞∂ ∂⎪= − + +⎨ ⎢ ⎥⎜ ⎟∂ ∂ ⎝ ⎠⎪ ⎣ ⎦⎩

After the solving of the new transformed problem 
we can approximately reconstruct the solution (the 
function ) on sub-domain0 ( , , )U x z y 0D  by 
formula: 

0 0
00

2
0

0 0
0 0

( , , )

( ) ( , , ) .
2

z
z

z

k uU x z y u z
k z

z uL u k F x z y
k x x

=
=

=

∂
= − −

∂

⎡ ∂ ∂ ⎤⎛ ⎞+ +⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦

 

The estimation of the error  between the 
solutions of the original and the transformed 
problems at the end point

0UΔ

z δ= −  is similar to with 
that given in paper [4] (only one additional term 
appears). E.g., in case of approximation by constant 
we obtain following expression: 

0
0 0

0 0

( )
2

z

u uU k L u k F
k z x x
δ δ

0

=

⎡ ⎤∂ ∂ ∂⎛ ⎞Δ ≤ + + +⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦
The process of obtaining the new non-classical BC 
in case of third type BC 

00
0 0 ( , )

z

Uk h u
z δ

ϕ
=−

∂
− + =

∂
x y  

in the initial statement of problem is similar to the 
case of the given second type BC. For the simplest 
approximation instead of BC (12) we obtain 
following new BC: 

( )

0
0

0 0
0 0 .

z

u uk k
z x x

h u L u f

δ

δ ϕ δ
=

∂ ∂ ∂⎛ ⎞+ −⎜ ⎟∂ ∂ ∂⎝ ⎠

⎡ ⎤+ = − +⎣ ⎦

 

The first type of BC on  0H
0

0 ( , )
z

U x
δ

ϕ
=−

= y                (14)                    
requires different consideration. The direct use of 
the simplest assumption (10) gives:  

0 0
0

( , , ) ( , )

( ,0, ) ( , ),

U x z y u x y

u x y x yϕ

≅ =

=
             (15) 

i.e.  
0

0
( , ).

z
u xϕ

=
= y  

0uδ

⎫⎪
⎬
⎪⎭

 (13’) 

That means that from the new formulation of the 
problem all the physical and geometrical properties 
of the sub-domain  have disappeared. That is 
inadmissible decision. The right way is to 
employment the principal relation with the usage of 
the equality (15) for first term and operator , the 
continuity condition (4) for first flux term and 
neglecting second flux term. Then, instead of first 
type BC (14) we obtain following generalization of 
second type BC: 

0D

0L
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( )0
0

0 ( , ), ( , ) .

u uk k L
z x x
f x y x y H

δ δ

δ

∂ ∂ ∂⎛ ⎞+ +⎜ ⎟∂ ∂ ∂⎝ ⎠
− ∈

u =
             (16) 

We can modify the transformed BC by using 
obvious equality: 

0

0
( ,0, ) ( , )( , ) .

2
u x y x yu x y ϕ+

=              (17) 

Then instead of BC (16) we obtain following non-
classical BC: 

( )

( )

0
0

0
0 0

0 0

2

1( , ) .
2

u uk k L u
z x x

f x y k L
x x

δ

ϕδ ϕ

∂ ⎡ ∂ ∂ ⎤⎛ ⎞+ + =⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠⎣ ⎦
⎧ ⎡ ⎛ ⎞∂ ∂⎪− + +⎨ ⎬⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

⎫⎤⎪
   (18) 

The next step is the approximation of the 
solution by linear function. The equality 
(17) together with evident equality 

0 ( , , )U x z y

00 0
0 ( ,0, ) ( , )

z

U kk u x y
z δ

ϕ
δ=−

∂ ⎡= −⎣∂
x y ⎤⎦  

gives such generalization of third type BC on the 
hyper-plane H : 

( )

( )

0
0

0

2 0
0 0

0 0
0

2

1 .
2

u uu k k L u
k z x x

f k L
k x x

δ δ

δ ϕϕ ϕ

⎧ ⎫∂ ⎡ ∂ ∂ ⎤⎛ ⎞+ + +⎨ ⎬⎜ ⎟⎢∂ ∂ ∂⎝ ⎠⎣⎩
⎧

0

=⎥
⎦⎭

⎡ ⎤⎛ ⎞∂ ∂⎪ ⎪− + +⎨ ⎬⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

]

⎫
    (19)    

The approximation the solution by 
linear function means the constant flux at any 
point

0 ( , , )U x z y

[ ,0z δ∈ − . This concept brings us to other 
form of non-classical BC: 

( )

( )

0
0 0

0
0 0

0

2 ( , )

.

uk L u f x y
x x

k L
x x

ϕ ϕ

⎡ ∂ ∂ ⎤⎛ ⎞ + = −⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞∂ ∂

+⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎣ ⎦

+

 

The following step to increase accuracy of new non-
classical BC on H consists of the usage of second 
order polynomial 

2

0 1( , , ) ( ,0, ) ( ) ( )z zU x z y u x y u y u y
δ δ

⎛ ⎞= + + ⎜ ⎟
⎝ ⎠

2 .  (20) 

The BC (14) together with conjugation condition (4) 
and definition (8) gives the first of two new BC on 
the hyper-plane H : 

 0
0

0

2 3
2

k u u
k z

 The representation (20) allows obtaining following 
expression for the difference of fluxes: 

( )
0

00 0
0 02

6 2
z

z

U kk u
z δ

ϕ
δ

=−

=−

∂
= + −

∂
u . 

 Then the principal relation (9) easy gives the second 
new BC:  

( )
2

00
0 0

0 0

2
0

0
0

2

( , ).
2

uk uu k
k z k x x

f x y
k

δ δ

δϕ

L u⎡ ∂ ⎤∂ ∂ ⎛ ⎞− − +⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠⎣ ⎦

= +

        (22) 

The system of two BC (21), (22) can be reduced to 
one equation by excluding from it the averaged 
function . 0 ( , )u x y
 
2.2 Conservative Averaging According the 
Coordinate x   
Now the original problem consists of the main 
equation (7). The solution of this equation (together 
with appropriate BC) we denote again as :   ( , , )u x z y

( )

( , , ), ( , , ) .

u uk k
x x z z

F x z y x z y D

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
= − ∈

L u
 (23) 

Now we introduce second integral averaged 
function, in x − direction: 

uδ ϕ∂
= + −

∂
.              (21) 

0 0
0

1( ) ( , )
H

v y u x y dx
H

= ∫ . (24) 

Then we integrate the principal relation (9). This 
gives exact equality again: 

( )
0

0 0 0 0 0
0

0

0 0 0
0

1( ), ( ) ( , ) .

z x

z
H

k v k uL v
z H x

g y g y f x y dx
H

δδ

=− =

=− =

∂ ∂
+ +

∂ ∂

= − = ∫

H

x  (25) 

We shall call this equality second principal relation. 
Second principal relation (25) is also an 
underdetermined equation. It contains two different 
functions:  and   in one equation. 0 ( )v y 0 ( , )u x y
Conservative averaging in directions with 
assumptions which led to non-classical BC (12) 
immediately gives following relation: 

z −

( )0 0

0

0

0
( ) ( ) .

x H

x

kk u uL u
z H x

y g y

δ

φ
δ

=

=

∂ ∂
+ + =

∂ ∂

⎡ ⎤
− +⎢ ⎥
⎣ ⎦

              (26) 

Here 
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0 0
0

1( ) ( , ) .
H

y x
H

φ ϕ= ∫ y dx  

For non-classical system of two BC (13) we will 
have system of two relations: 

( )00 0
0

0

0
0 2 0

0
0

0
00 0

,
6

3 .
2

x H

x

x H

x

k vuk L
z H x

g L
k

vkuk u
z H

δ δ

φφ δ δ

φ
δ

=

=

=

=

⎧
∂∂⎪ + +⎪ ∂ ∂

⎪
⎪ ⎡ ⎤⎛ ⎞⎪− + +⎨ ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦⎪
⎪ ⎛ ⎞∂⎪ ⎜ ⎟= − +⎪ ⎜ ⎟∂⎪ ⎝ ⎠⎩

u =

                  (27) 

It remains to repeat the conservative averaging 
in x − direction as in part 1 of our paper. 
 
3 Some examples of Transformed 
Problems 
We will start with the first type BC for heat transfer 
problem. To simplify the explanation we assume 
absence of other space arguments, i.e. y y′ t≡ = . 

Further, let the operator is the time derivative in 
the heat equation:  

0L

0
0 0( ) : uL u c

t
ρ ∂

= −
∂

. 

Then the equation (16) gives following non-classical 
BC on hyper-plane for the main PDE (7): 0z =

0 0 0 0 ( , ).u u k uc k f
t x x z

ρ
δ

∂ ∂ ∂ ∂⎛ ⎞= + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
x t           (28) 

This BC by absent second space coordinate x  
reduces to so-called “concentrate heat capacity” 
condition with one flux term (see [1], [5]). 
By the way, we can easy demonstrate how we can 
obtain from principal relation (9) the well known 
convective heat (mass) exchange BC. Let it be given 
the first type BC (14). We assume the absence of 
operator , of source term and of conduction term 
in equation (9). Then this equation for 
function reduces to following simple 
equality: 

0L

0 ( , )U z y

0
0

0 0
z

z

Uk
z δ

=−

=−

∂
=

∂
. 

Assuming the linearity of solution in direction 
for the lower flux term and using second 
conjugations condition (4) for the upper flux term 
we obtain: 

z −

0 0( ), kuk h u h
z

ϕ
δ

∂
= − =

∂
. (29) 

We will finish with mathematical model for 
diffusion-convection problem in orthotropic media, 
which generalize simplest BC (29). We take the 
PDE (1), (2) in form: 

1 2

( , , ), ( , , ) ,

U Uk k Uv
x x z z

Uc F x z y x z t
t

x

D

∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∂

− = − ∈
∂

  1(1 )

0 0 0
0,1 0 0

0
0 0 0( , , ), ( , , )

U U Uk k v∂
x x z z t

Uc F x z t x z t D
t

∂ ∂∂ ∂⎛ ⎞ ⎛ ⎞+ −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∂

− = − ∈
∂

1(2 )  

together with conjugation conditions (3), (4) and BC 
(14). We also need other initial and BC, but they are 
not important for averaging process. The averaging 
procedure by means of principal relation (9) leads to 
following formulation. We obtain the main PDE on 
sub-domain ( , , )x z t D∈ : 

 
1 2

( , , )

u uk k
x x z z

u uv c F x z y
x t

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∂ ∂

− = −
∂ ∂

 (30) 

with following  non-classical BC on hyper-
plane ( )0H z = : 

0
0,1 0

00
0 0 ( , ) .

ku k uk u uv
x x z

kuc f x t
t

δ δ

ϕ
δ

t
∂ ∂ ∂⎛ ⎞ + − −⎜ ⎟

∂
∂ ∂ ∂⎝ ⎠

∂ ⎛ ⎞− = − +⎜ ⎟∂ ⎝ ⎠

∂
 (31) 

The non-classical BC of type (31) for main PDE 
(30) allows us to describe different physical 
processes in thin border layer, e.g. [7], [8].  
  
 
 
4   Conclusions 
Conservative averaging method can be applied to 
steady-state and non-stationary problems, to 
problems with continuous or discontinuous 
coefficients. It can be applied to different types of 
boundary conditions.  
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