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Abstract: - Theoretical advances toward a purely meshless framework for analysis of the gen-
eralized fractal dimension, with applications to turbulence, are considered. The key basic
theoretical idea is the formulation of the probability density function of the minimum distance
to the nearest part of the flow feature of interest, e.g. a turbulent interface, from any location
randomly chosen within a reference flow region that contains the feature of interest. The prob-
ability density function of the minimum-distance scales provides a means to define and evaluate
the generalized fractal dimension as a function of scale. This approach produces the generalized
fractal dimension in a purely meshless manner, in contrast to box-counting or other box-based
approaches that require meshes. This enables the choice of a physical reference region whose
shape can be based on physical considerations, for example the region of fluid enclosed by the
turbulent interface, in contrast to box-like boundaries necessitated by box-counting approaches.
The purely meshless method is demonstrated on spiral interfaces as well as high-resolution ex-
perimental turbulent jet interfaces. Examination of the generalized fractal dimension as a
function of scale indicates strong scale dependence, at the large energy-containing scales, that
can be described theoretically using exponential Poisson analytical relations.
Keywords: - Fractals, Dimensions, Distributions of Scales, Turbulence, Self-Similarity.

1. Introduction

Turbulent flows and other multiscale flows ex-
hibit highly complex geometrical behaviour as
is directly evident in quantitative and qualita-
tive visualizations in nature as well as in labo-
ratories [e.g. 1, 2]. Because of this geometrical
complexity, which results directly from highly
irregular multiscale dynamics, advancing the
knowledge of geometrical properties remains
a challenging task [e.g. 1–3]. In turbulence,
geometrical aspects are useful both for funda-
mental studies and for applications [e.g. 1–3],
in a wide range of problems with phenomena
ranging from molecular diffusion to electro-
magnetic wave propagation. Fundamentally
as well as in applications, it is desirable to de-

velop new ideas that can facilitate the study
of geometrical multiscale properties of a va-
riety of flow aspects such as fluid interfaces,
vortices, or dissipation regions.

In previous studies of geometrical aspects of
turbulence and multiscale flows, a key con-
cept that has emerged is the notion of frac-
tional, i.e. non-integral, dimensions or fractal
dimensions. The earliest suggestions of the
use of the fractal concept in fluid mechanics
can be traced to Richardson [4], who cited
Weierstrass regarding what are now known
as fractal functions, i.e. self-similar func-
tions. Extensive studies of fractals in tur-
bulence started with the work of Mandelbrot
[5] . The words fractal and self-similar, both
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coined by Mandelbrot, reflect ideas concern-
ing multiscale behaviour of direct interest to
turbulence studies, with the former etymolog-
ically meaning fragmentation and the latter
denoting repetition of structure at multiple
scales, i.e. scale independence or scale invari-
ance. However, other studies starting with
the work of Takayasu [6] indicate scale depen-
dence as an additional, or alternative, con-
cept for the multiscale geometrical nature of
turbulence [e.g. 2]. In fact, level-crossing mea-
surements in turbulence [e.g. 7] in conjunction
with general theoretical results on fractal di-
mensions [8] indicate scale dependence rather
than scale independence.

As an idea as well as a tool, the fractal di-
mension is invaluable in light of the need to
quantify the multiscale geometry of turbu-
lence. Reviews of some of the key develop-
ments on fractals in turbulence are available
in a number of articles [e.g. 2, 3]. Findings of a
constant or nearly-constant fractal dimension
in a range of scales imply self-similarity [e.g.
3]. Observations of scale dependence of the
fractal dimension [e.g. 2, 8] can imply either
intrinsic variation of structure with scale, or
intermittently self-similar behaviour, or finite-
size effects of upper and lower cutoff scales. In
practice, the conventional approach to frac-
tal aspects of turbulence is in terms of box-
counting methods that require partitioning of
box-shaped regions that are chosen to contain
the turbulent features of interest [e.g. 3].

In the present work, theoretical advances to-
ward a purely meshless approach to the ana-
lysis of generalized fractal dimensions are in-
vestigated. The probability density function
of the shortest distance from random point
locations to the flow feature of interest is con-
sidered. The method is demonstrated and in-
vestigated using spiral interfaces as well as
fully-developed turbulent jet interfaces. Re-
sults are presented concerning the generalized
fractal behaviour and demonstrating the util-
ity of the meshless method for the study of
the multiscale geometry of turbulent flows.

2. The Minimum Distance
Method and Purely Meshless
Analytical Framework

Throughout most previous studies of fractal
aspects of turbulence [e.g. 1, 3, 5], statistical
self-similarity has been assumed in a range of
scales in which a turbulent feature of inter-
est has a fractal, i.e. fractional, dimension Dd

that is scale-independent and quantifies the
multiscale geometrical behaviour:

0 ≤ Dd ≤ d , (1)

within a reference region of Euclidean dimen-
sion d. In other studies, however, it has been
suggested to generalize the original notion of a
fractal dimension to allow for possible depen-
dence on scale, i.e. a dimension Dd(λ) that
can be a function of scale λ [e.g. 2, 6, 8]. This
has been denoted as a differential or scale-
dependent fractal dimension. We denote it
here as a generalized fractal dimension.

Motivated by previous theoretical work [8], we
consider as a basic idea toward a purely mesh-
less framework, as shown in figure 1, the iden-
tification of any random location from which
the minimum distance to the nearest part of
the turbulent feature is identified. This can
be performed for several random locations, as
shown for example in figure 1, that are se-
lected from within a reference boundary.

Theoretically, the shortest distances from all
possible such locations, i.e. an infinity of such
locations, determine the probability density
of these distances. In practice, a finite num-
ber of such locations depending on the scale
resolution desired for the probability density
function can be expected to be sufficient.

The method, therefore, provides an intrinsi-
cally Monte Carlo approach. The procedure
is repeated for as many locations as needed de-
pending on the scale resolution desired for the
resulting generalized fractal dimension func-
tion. As will be shown below, the shortest-
distance scales can be used directly to com-
pute the generalized fractal dimension func-
tion.

2

Proceedings of the 5th IASME / WSEAS International Conference on Fluid Mechanics and Aerodynamics, Athens, Greece, August 25-27, 2007      289



Figure 1: In the purely meshless approach,
a boundary region of any shape can be cho-
sen. In this schematic, a circular boundary
is shown (dotted). Multiple random loca-
tions (crosses) selected within this bound-
ary are utilized to evaluate the minimum
distance from each location to the nearest
flow feature.

The shortest-distance probability density
function, gd(λ), in general d-dimensional
space, is defined as follows:

Minimum-Distance PDF gd(λ):

We define the quantity gd(λ)
as the probability density func-
tion (pdf) of the minimum dis-
tance λ from a randomly lo-
cated point, within the refer-
ence boundary, to the nearest
part of the flow feature of in-
terest.

By minimum distance, in d dimensions, we
mean the shortest distance in a general sense,
i.e. in space, in time, or in space–time, as
appropriate, from each point randomly cho-
sen but contained within a (d−1)-dimensional
reference boundary, to the flow feature of in-

terest. Along with the shortest-distance prob-
ability density function, i.e.

gd(λ) = P{λ is min. distance to flow feature} ,
(2)

we therefore have the associated shortest-
distance probability gd(λ) dλ. The normaliza-
tion integral, over the region contained within
the reference boundary, is:∫ λC

0
gd(λ)dλ = 1 , (3)

where λC denotes a scale, with λ ≤ L, and L
denotes the largest characteristic scale of the
flow. In general, i.e. for multiscale flow fea-
tures, we can expect that there will be a scale
above which gd(λ) = 0 yet this scale need not
be as large as the largest characteristic scale L
of the flow. This is because the convolutions
of the flow feature directly limit the maximum
possible value of the shortest distance. We
can define λC as the maximum shortest dis-
tance scale, i.e. such that gd(λ > λC) = 0 or
gd(λ ≤ λC) > 0:

λC = max
λ
{λ : gd(λ) > 0} . (4)

We note that this scale can also be effec-
tively identified using minλ {λ : gd(λ) =
0}. The cumulative minimum-distance dis-
tribution function Gd(λ) associated with the
shortest-distance probability density function
gd(λ) is, i.e.

Gd(λ) =
∫ λ

0
gd(λ′) dλ′ , or , gd(λ) =

dGd(λ)
dλ

,

(5)
with limiting values Gd(λ → 0) → 0 and
Gd(λ → λC) → 1 at the smallest and
largest scales, respectively. The minimum-
distance probability density function gd(λ)
and the minimum-distance cumulative distri-
bution function Gd(λ) can now be utilized di-
rectly, in analogy with previous theory [8],
to obtain the generalized fractal dimension
Dd(λ) and scaling exponent αd(λ):

Dd(λ) ≡ d − d log Gd(λ)
d log λ

, (6)

and
αd(λ) ≡ − d log gd(λ)

d log λ
. (7)
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Substituting for Gd(λ), using equation 5 and
the normalization equation 3, we have:

Dd(λ) = d − λ gd(λ)∫ λ

0
gd(λ′) dλ′

, (8)

or,

Dd(λ) = = d − λ gd(λ)

1 −
∫ λC

λ
gd(λ′) dλ′

, (9)

and,

gd(λ) =
Ed(λ)

λ
exp

{
−

∫ λC

λ

[
Ed(λ′)

] dλ′

λ′

}
,

(10)
where Ed(λ) ≡ d − Dd(λ) and the improve-
ment with respect to the earlier framework [8]
is that this approach is purely meshless, i.e.
it is free of any box-like constraints. Thus,
the method enables the evaluation of the gen-
eralized fractal dimension Dd(λ) from the
minimum-distance probability density func-
tion gd(λ).

3. Applications of the Min-
imum Distance Framework to
Spiral and Turbulent Inter-
faces

Application to spiral interfaces, in figure 2,
shows that the purely meshless method is
more accurate than box-based methods be-
cause it captures very well the transition in
the dimension at the scale of the spacing be-
tween spiral turns. As is evident in figure 1,
the concept of the minimum distance is ap-
plicable to all randomly-chosen points within
the reference boundary. For each such point,
the shortest distance λ ≥ 0. If the random
location is a part of the flow feature, then
λ = 0. If the random location is not part
of the flow feature, then λ > 0. Because the
randomly chosen locations must be within the
reference boundary, the probability density
function gd(λ) is therefore a conditional prob-
ability density function of shortest-distance
scales.

Figure 2: Spiral of Archimedes, i.e. r ∼ θ,
and the generalized fractal dimension as a
function of scale for a circular boundary us-
ing the purely meshless approach (dashed)
and for a box boundary using box counting
(solid). The purely meshless approach cap-
tures accurately the transition in the gen-
eralized fractal dimension, which occurs at
the scale given by the spacing between spi-
ral turns, as shown by the arrows.
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Figure 2. Example of a 2D image of a turbulent jet scalar interface before
coarse-graining. Resolution of the image is 1024 x 1024.

Figure 3. The region of fluid contained within the scalar interface, shown
in figure 2, used as the reference region for randomly chosen locations.

Consider a point x∈ [xm,xm+1], from which the displacement δxm
from the nearest data point on the left can be defined as δxm =
x− xm, where δxm ∈ [0,1]. In order to find the interpolated value
bm in the region, bilinear interpolation is defined as

bm(x) = bm(δxm) = (1−δxm)bm +δxmbm+1 (15)

With any method of interpolation used for coarse-graining, the
continuity across the boundary of each region [xm,xm+1] must be

Figure 4. Randomly chosen locations within the turbulent scalar inter-
face of the jet.

Figure 5. A log-log plot showing the fractal dimension of the 2D scalar
interface as a function of scale.

preserved per the requirement

bm(δxm = b) = bm+1(δxm+1 = a), (16)

where a = 0, b = 1 for bilinear interpolation. This method can
be extended easily to two-dimensional interpolation, as is used
in this study, or to three-dimensional interpolation.

The same image of a turbulent scalar interface shown in fig-
ure 2 is chosen to illustrate the process on the following pages.
The image is increasingly coarse-grained with bilinear interpo-
lation and a new random number of points is chosen within the
reference boundary of the scalar interface. This is shown in fig-
ures 6 through 13. Also shown are plots of the fractal dimension
versus scale for each increasingly coarse-grained image.

4 Copyright c© 2007 by ASME

Figure 3: Example of conditional randomly chosen locations and minimum-distance scales
within an outer turbulent jet scalar interface, with the interface as the reference boundary.
The Reynolds number is Re ∼ 20, 000 and the Schmidt number is Sc ∼ 2, 000.

Application to experimental fully-developed
turbulent jet interfaces is shown in figure 3.
The minimum-distance scales from condition-
ally random locations chosen within the outer
turbulent jet scalar regions are indicated in
figure 3. In order to focus on the behav-
ior of the generalized fractal dimension at the
energy-containing large scales, coarse graining
was performed to retain large scales and filter
small scales at the Taylor scale threshold.

The corresponding results on the generalized
fractal dimension as a function of scale are
shown in figure 4. The results clearly indi-
cate a strong scale dependence of the gener-
alized fractal dimension as a function of scale
at large scales, which in particular appears to
correspond to an exponential distribution of
scales, i.e., Poisson statistics, as is evident by
comparing the behavior in figure 4 to previous
theoretical studies of exponential probability
density functions of scales [8].

Figure 4: Generalized fractal dimension as
a function of logarithmic scale, evaluated
using the shortest-distance scales from con-
ditionally random locations in the coarse
grained scalar turbulent jet regions, cre-
ated by spatial averaging combined with
bilinear interpolation.
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The experimental data shown in figure 4,
which are for coarse-grained turbulent jet
scalar interfaces, are in very close agreement
with exponential statistics [8]. Specifically,
the theoretical formula for the generalized
fractal dimension as a function of scale for ex-
ponential statistics is as follows:

D2(λ) = 2 − λ/lm

eλ/lm − 1
. (11)

Thus, this result shows that the large-scale
statistical geometrical behavior in turbulent
jets can be quantified in terms of exponen-
tial Poisson statistics for the generalized frac-
tal dimension as a function of scale. This is
specifically the case in the range of energy-
containing scales which, for the present data,
is 7.8 × 10−3 ∼ λ/L ∼ 1. We note that this
scale is consistent with an estimate based on
large-scale dynamics, i.e.
λL

L
∼ Re−1/2 ∼ (2×104)−1/2 ∼ 7.1×10−3 ,

(12)
for the present conditions of Reynolds number
Re ∼ 20, 000.

4. Conclusions

The present findings show that the purely
meshless minimum-distance theoretical
framework provides a practical method for
determining the generalized fractal dimension
as a function of scale. We have demonstrated
the use of the method for spiral interfaces and
for fully-developed turbulent interfaces. For
example, the present observation of Poisson
behavior of the generalized fractal dimension
as a function of scale, at large scales, quan-
tifies the scale dependence in turbulent jets.
This is crucial in several applications, e.g. for
modeling the mixture fraction, because recent
work has shown that the large-scale geome-
try of the outer scalar interfaces provides the
dominant contribution to the mixture fraction
[2]. We note that the large-scale geometrical
aspects of turbulent scalar interfaces are of di-
rect practical interest in various applications
such as the mixing efficiency of fluids engi-
neering devices, laser propagation through
turbulence, and flow optimization.
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