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Abstract: - Two types of laminar flows of non-Newtonian fluids in annuli with stationary outer cylinder are analysed 
from the viewpoint of existence of an exact analytical or almost exact analytical (quasisimilarity) solution relating 
volumetric flow rate and axial pressure gradient. The exact analytical solution is derived for the Vocadlo (Robertson-
Stiff) fluids when flow is caused simultaneously by the inner cylinder moving along its axis and by the pressure 
gradient imposed in the axial direction. Both cases - either pressure gradient assists to the moving cylinder or opposes - 
are considered. The quasisimilarity solution is derived for the power-law fluids when the inner cylinder rotates under a 
constant torque and pressure force is imposed in the axial direction as in the preceding case. 
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1   Introduction 
The flow of non-Newtonian fluids through an annulus is 
often encountered in various industrial processes such as 
transportation of drilling fluids in petroleum industry and 
extrusion of polymers (in a mandrel region). 
     In the annular flow one of the most difficult 
complications consists in the inhomogeneous 
distribution of shear stresses in the annular region. The 
analysis of annular flow originated by a combination 
(Couette-Poiseuille flow) of the drag (Couette flow) and 
pressure (Poiseuille flow) forces is further complicated 
by the fact that no superposition principle takes place; in 
other words, this flow field is not possible to obtain as a 
mere superposition of corresponding Couette and 
Poiseuille flow fields. This is a direct consequence of the 
dependence of fluid viscosity on velocity field 
invariants. 
     At present there exist two basic classes of constitutive 
equations describing rheological quantities of the 
materials: classical empirical models (relating stress, rate 
of deformation, viscosity) and more sophisticated ones 
(differential, integral or integro-differential equations 
based on physical grounds). The latter ones provide 
more complex characterisation of materials including 
simultaneous description of the individual rheological 
quantities, their number of adjustable parameters is 
limited, however their accuracy is not always acceptable 
in all aspects. On the other hand usefulness of the 
classical empirical models is examined through a 
number of decades, from the practical point of view only 
the usage of these models gives a chance for derivation 
of analytical solutions. 
     Roughly speaking there are two approaches how to 
cope with the description of the Couette-Poiseuille 

flow situations. The numerical approach aims at a 
calculation of the quantities (e.g. velocity components, 
flow rate) describing the concrete problem, and with an 
arbitrary change of the entry parameters (geometry, 
kinematics, rheological characteristics) it is necessary to 
repeat the whole procedure from the beginning.  
     The other approach lays emphasis on the functional 
participation of the individual entry parameters in the 
whole solution. This method enables to decide which 
parameters should be altered (and in which way) to 
obtain the more favourable results e.g. from the 
viewpoint of production rate. In this case the optimum 
approach is represented by an explicit solution or 
‘almost explicit’ one (as e.g. so-called quasisimilarity 
solution) deviating negligibly from the exact one.   
     In the present contribution this second approach is 
presented for two types of steady laminar isothermal 
Couette-Poiseuille flows of incompressible fluids in 
concentric annuli. For both types it is supposed that an 
outer cylinder is stationary and pressure is exerted in an 
axial direction. The difference is in kinematics of an 
inner cylinder - either moving along (application of the 
Vocadlo rheological model) or rotating round 
(application of the power-law model) its axis. 
 
 
2   Non-helical and helical flows of power-
law fluids in concentric annuli 
In this section there will be presented the possibilities 
how to determine analytically or almost analytically the 
relation volumetric flow rate vs. axial pressure gradient 
for Poiseuille (both cylinders are stationary) and 
Couette-Poiseuille (outer cylinder is stationary, inner 
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cylinder is rotating round its axis) flows under the 
exertion of pressure in an axial direction, see Fig.1. 
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Fig.1  Definition sketch. 
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by the following expression (η denotes shear viscosity) 
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    Denoting velocity components by 
0, . ( ), ( )r zv v r W r v Uφ= = =     (4) 

we can formulate balance equations in the form 
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The boundary conditions are 
( ) 0, ( ) 0, ( ) , ( ) 0U R U R W R W Rκ κ= = = Ω = . (7) 

For the case of non-helical case the problem formulation 
is simplified due to the fact that M≡0 (and consequently 
W≡0, vφ≡0). 
 
 
2.1 Non-helical flow 
The first theoretical contribution dealing with the flow of 
a power-law fluid through a concentric annulus with 
steady cylinders is a paper by Fredrickson and Bird [11]. 
They derived a relation between flow rate and axial 
pressure gradient by means of infinite series for the cases 
when a reciprocal value of the flow behaviour index n is 
a natural number. In their derivation a parameter λ (λR is 
a location of maximum velocity) plays a crucial role. For 
its determination it is necessary to solve an integral 
equation 
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Due to this fact and to the form of the derived solution 
(infinite series) the role of the individual entry 
parameters is not sufficiently elucidated. 
     Substantial improvement was presented by Hanks and 
Larsen [14] who derived an analytical relation between 
flow rate and pressure gradient for an arbitrary value of 
flow behaviour index n. Nevertheless, their relation still 
requires knowledge of a parameter λ - thus demanding 
the numerical solution of the integral equation 
introduced in Fredrickson and Bird [11]. The same result 
was derived by Prasanth and Shenoy [18]. 
     Non-helical flow was also analysed by Bird et al. [1] 
using a variational method. They minimised the 
corresponding functional using the supposed one-
parametrical distribution of velocity. They finally 
obtained a relation that eliminated the parameter λ but in 
fact they derived a relation identical to that in McKelvey 
[17] for flow of a power-law fluid between two parallel 
plates (in other words, they implicitly supposed 
λ=(1+κ)/2). The inaccuracy of their result to the 
numerical solution is in full correspondence with Fig.8 
in Worth [26]. Worth discussed the difference between 
the solution for a concentric annulus with that for 
parallel plates. This difference does not exceed 2% for 
κ≥0.5 and n≥0.25. Another possible approach is given in 
David and Filip [4]. 
     The given problem is also possible to treat from the 
viewpoint of the similarity behaviour. It was shown 
(David and Filip [3]) that a solution exhibits various 
features of similarity behaviour – not in an exact form 
but only approximately (it implies the term 
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‘quasisimilarity’). Nevertheless, even this ‘weak’ 
similarity enables one to derive a ‘universal’ solution 
which is possible to rewrite to a concrete form for given 
entry parameters by means of certain derived 
transformations. This fully eliminates the role of the 
parameter λ; however, quasisimilarity is not valid in the 
whole range of entry parameters κ, n. Nevertheless, 
based on this quasisimilarity behaviour, the approximate 
relations (David and Filip [5]) were derived for the 
whole range of entry parameters. The inaccuracy of 
these approximate relations to the precise ones is 
negligible (in comparison with experimental setting of 
parameters k,n of a power-law model), these 
approximate relations do not include the parameter λ and 
with respect to their accuracy provide functional 
dependence of entry parameters in the resulting 
expression between flow rate and pressure gradient.  
 
 
2.2 Helical flow 
Rivlin [21], and Coleman and Noll [2] ranged among 
first who derived balance equations for the case of the 
rotating inner cylinder. A series of authors published 
papers dealing with various constitutive equations and 
experimental set-ups – e.g. Tanner [22, 23], Dierckes 
and Showalter [6], Rea and Showalter [19], Rigbi and 
Galili [20], Winter [25], Garcia-Ramirez and Isayev 
[12], Dostal et al. [7]. For a more complete list of 
references (dealing not only with the power-law fluids 
and including also a non-helical case) see also Escudier 
et al. [8]. 
     In the following the quasisimilarity analysis will be 
used to determine the relation volumetric flow rate-
pressure drop-torque. 
     The quasisimilarity solution is possible to derive in 
three consequent steps: derivation of a dimensional 
solution, its transformation to a non-dimensional form, 
and finally application of suitable scales to the resulting 
relations (obtaining of the ‘universal’ profiles). 
     A dimensional solution and suitable non-dimensional 
transformations are introduced in Filip and David [10]. 
The non-dimensional form of the solution is as follows 
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The relations for dimensionless axial flow rate and 
torque are of the form 

2
4 3( ) , 2q j j m lπ λ π= ⋅ − = β    .    (14) 

    The answer to a question how to obtain suitable scales 
transforming the dimensionless solutions for various 
entry parameters to a unique one, proceeds in the 
following way: 
a) behaviour of the quantities q and ω  will be 

determined for the limiting cases β→0 and β→∞ ; 
b) the intersection of these limiting cases will be taken 

as a reference point for derivation of the resulting 
transformations; 

c) the asymptotic planes for flow rate will be derived 
using these new transformations; 

d) existence of a quasisimilarity solution will be shown. 
 
ad a1)   case β→0 (vanishing influence of rotation) 
In this case we obtain 
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The relation for q0 was derived by Hanks and Larsen 
[14]. 
 
ad a2)   case β→∞ (prevailing influence of rotation) 
From the relations obtained in the second step it follows 
that 
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ad b)   The relations for q0, q∞ determine in the plot 
log(q) against log(β) two asymptotic straight lines 
intersecting at the point (q0, β0) where 
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These three quantities q0, ω0, β0 represent the scales that 
enable one to introduce the resulting transformations 

Proceedings of the 5th IASME/WSEAS Int. Conference on Heat Transfer, Thermal Engineering and Environment, Athens, Greece, August 25-27, 2007   11



0 0

, ,r r r
qq
q 0

ω βω β
ω β

= = =     .   (22) 

 
ad c)   From above it follows that in the coordinate 
system [log(qr), log(βr), log(ωr)] there exist two 
asymptotic planes given by the relations 
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It is evident that the straight line given by the 
intersection of these asymptotic planes represents all 
Newtonian cases. Moreover, and this is important for the 
whole quasisimilarity analysis, neither plane depends on 
the flow behaviour index n and aspect ratio κ or any 
other entry parameter.  
 
ad d)  This implies that it is possible to determine 
approximate resulting values of the whole problem from 
the following Figs.2-6 taken from Filip and David [10] 
(Figs.5,6 are projections onto the corresponding planes 
in the coordinate system [log(qr), log(βr), log(ωr)]) 
where the value κ=0.99 was taken as a basis for a 
‘universal’ profile. This value was chosen due to the 
following reasons:  
- for given n and β a deviation between the 

quasimilarity and exact solutions dramatically 
decreases with the increasing value of aspect ratio κ,  

- with increasing value of κ this deviation does not 
exceed the acceptable limit for still broader range of 
the parameters n and β.  

     From the entry parameters we obtain the values q0, 
ω0, β0, consequently the values qr, ωr, and from the 
dimensionless transformations the resulting final values 
(as e.g. flow rate Q). If we restrict the quasisimilarity 
region by the conditions 

( ) (2170.4 , 0.2 , 1 1
2

nκ β≥ ≥ ≥ ⋅ − ⋅ )κ κ+   (25) 

then the inaccuracy of the approximate solution from the 
precise one does not exceed 2%. This value is attained in 
the very limited region along the part of the boundary 
given by rel.(25); this deviation decreases with the 
increasing aspect ratio κ as well as with the increasing 
flow behaviour index n. 
     For n=1 (Newtonian fluid) the relative flow rate qr is 
independent on βr and ωr (q = q0); in the coordinate 
system [log(qr), log(βr), log(ωr)] flow of Newtonian 
fluids is represented by the straight line log(qr)=0, 
log(βr)=log(ωr).  
     For dilatant fluids (n>1) the deviation between the 
quasisimilarity solution and the exact one is completely 
negligible, i.e. for every set of entry parameters (and not 
only for those restricted by rel.(24)) the true curve sticks 

very closely to the asymptotic planes (23, 24). In this 
case the derived functional behaviour fully describes the 
problem studied. The increase of flow behaviour index n 
and/or torque M results in the decrease of flow rate. 
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Fig.2  Dependence of q0 on entry parameters κ, n. 
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Fig.3  Dependence of β0 on entry parameters κ, n. 
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Fig.4  Dependence of ω0 on entry parameters κ, n. 
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Fig.5  Dependence of qr on βr, n. 

 

-1 -0.75 -0.5 -0.25 0 0.25 0.5
log(βr)

-1

-0.5

0

0.5

1

lo
g(
ω

r)

0.2   0.35   0.5        n

                             0.65

                             0.8

                             1.0

                             1.5

                             2.0κ = 0.99

 
Fig.6  Dependence of ωr on βr, n. 

 
     The derived quasisimilarity solution subjects to a 
choice of the resulting transformations. The advantage of 
the relations (22) over the other possibilities consists in a 
‘proper’ quasisimilarity behaviour of the flow rate qr in 
dependence on βr and ωr; in other words, the course of 
the flow rate is very close (deviation less than 2% under 
the condition (25)) to the asymptotic planes representing 
classical similarity behaviour.   
 
 
3   Longitudinal flow of Vocadlo fluids in 
concentric annuli  
The literature on the axially moving inner cylinder 
(under simultaneous action of pressure gradient) is 
scarcer. For the case of the inner cylinder moving along 
its axis Wadwha [24] obtained the integral form for the 
axial velocity profile in the case of Ellis fluid. Lin and 
Hsu [15] studied power-law fluids and obtained the 
integral form for the flow rate. For the same problem 
Malik and Shenoy [16] succeeded to derive the semi-
analytical form, furthermore they considered both 

directions of the exerted pressure gradient and provided 
criteria for diversification among the individual possible 
cases.  
     This contribution deals with axial flow through the 
concentric annulus. The inner cylinder is moving at a 
constant velocity along its axis and simultaneously axial 
pressure gradient is exerted to Vocadlo fluid. The aim is 
to provide a unique classification of all possible cases 
(including possible appearance of plug flow regions) and 
for each case to derive volumetric flow rate in a semi-
analytical form. 
     As already mentioned above, geometrical and 
kinematical conditions correspond to those in Malik and 
Shenoy [16], geometrical and rheological to those in 
Gücüyener and Mehmetoğlu [13]. Unfortunately the 
present case is not possible to obtain (including power-
law model) as a simple superposition due to nonlinearity 
of the whole problem. 
     The problem is formulated as follows 
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with the Vocadlo (Robertson-Stiff) model  
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where K and n are consistency and flow behaviour 
indices, respectively; τ0 represents yield stress. 
     For the sake of simplicity the following 
transformations converting the problem to the 
dimensionless form are used 
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     In the derivation of fully analytical solution it is 
necessary to take into account whether pressure gradient 
assists or opposes the drag on the fluid caused by the 
moving inner cylinder. Each of these two cases is 
possible to classify into three situations diversified with 
respect to the location of plug flow region. Moreover, 
each of these six situations is possible to determine a 
priori by the classification criteria derived in Filip and 
David [9]. 
     As an example the following relation illustrates the 
relation between volumetric flow rate and pressure 
gradient for the case when pressure gradient opposes the 
drag on the fluid caused by the moving inner cylinder 
and plug flow region is formed within the annulus 
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(κ<λi<λo<1; inner and outer λi, λo denote the 
dimensionless boundary values of the plug flow region) 
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  (29) 
where s=1/n. This relation is applicable for a description 
of back-extrusion technique 
 
 
4   Conclusion 
Poiseuille-Couette flows in concentric annuli are 
analysed for fluids obeying frequently used power-law 
and Vocadlo empirical models. It is shown that for the 
types of flows studied there exist analytical or at least 
quasisimilarity solutions enabling to determine the 
participation of the entry parameters (rheological, 
geometrical and kinematical) in the relation volumetric 
flow rate vs. pressure drop (vs. torque).  
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