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Abstract: In this talk we consider a three-dimensional isothermal model for ice sheet dynamics in Glaciology. The
model is derived from the Continuum Mechanics principles and well-known experimental results carried out in
Glaciology. The final formulation of the model gives rise to a degenerate quasi-linear elliptic-parabolic equation
for the ice-thickness function. Under appropriate initial and Dirichlet boundary conditions, we discuss the existence
and uniqueness of weak solutions for this mathematical model. Then, we prove the localization properties of finite
speed of propagations and waiting time for the ice-thickness function. To establish these properties we use here a
suitable energy method.
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1 Introduction

Ice sheets are vast and slow-moving edifices of solid
ice, which are mainly concentrated in Antarctic and
much smaller in Greenland. They flow under their
own weight by solid state creep processes such as
the creep of dislocation in the crystalline lattice struc-
ture of the ice. In this resemble rivers, expect they
move more slowly and are consequently much thicker.
Ice sheets have thickness of several kilometers and
move at velocities of 10-100 meters per year. Despite
their slow movement and apparent changelessness, ice
sheets exhibits various interesting dynamic phenom-
ena. In polar climate regions the snow accumulates
on the uplands, is compressed into ice and flows out to
cover the region under the action of gravity. Ice flows
as highly viscous solids from the central parts, where
the thickness is great, towards the margins. If the mar-
gins are near the coast, it can be formed floating ice
shelves. The ice sheet equilibrium can be maintained
through a balance between accumulation in the cen-
ter and ablation at the margins. Accumulation oc-
curs mainly through solid precipitation and ablation
can occur either through evaporation or melting of the
ice in the warmer climate at the margin, or through
calving of icebergs.

The common Fluid Mechanics model adopted
for cold ice is a non-Newtonian, viscous, heat-
conducting, incompressible fluid. It should be pointed
out that, strictly speaking, it is not possible to assume
ice to be incompressible and yet still presume den-
sity variations under phase changes. It is, however,
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justified to ignore density variations since associated
changes in bulk density are very small. On the other
hand, it is worth to know that ice sheets are assumed
to be isotropic materials, but they can develop an in-
duced anisotropy when stressed over sufficiently long
time scales. The model adopted for ice sheet flows
result from the basic principles of Fluid Mechanics:

• the conservation of mass

divu = 0; (1)

• the conservation of momentum

0 = ρ g + divT. (2)

Note that in (2) we have neglected the inertial terms
because we are in the presence of very slow flows.
Moreover, we have not written the equation for tem-
perature, which results from the conservation of en-
ergy, because in the sequel we shall consider isother-
mal motions only. This brings some controversy to
the model, because isothermal models are not quan-
titatively very realistic. However they are mathemat-
ically nice and it is not our aim to produce the most
realistic model incorporating as much realism as pos-
sible. The notation used in (1)-(2) is well known: u
is the velocity field, p is the pressure, ρ is the con-
stant density, g is the gravitational force and T is the
Cauchy stress tensor:

T = −pI + S ; (3)

I is the unit tensor and S is the deviatoric part of T.
Notice that from (1), tr(S) = 0. Extra stress tensor
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S and strain rate tensor D are related by a rheological
flow law. According to the common usage in Glaciol-
ogy to write stretching as a function of stress, this law
states that the strain rate D, at a given strain, is pro-
portional to the stress S raised to the power n:

D = A(θ)sgn(S)|S|n, sgn(S) =
S
|S|

. (4)

This law was suggested by J.W. Glen and, for this
reason, is called Glen’s law in Glaciology. The ba-
sic postulate is that ice is an incompressible nonlinear
viscous fluid. Here n is a positive constant and the
function A may depend on the temperature and usu-
ally is postulated an Arrhenius-type relationship

A(θ) = A0 exp
(
− Q

kθ

)
, (5)

where Q is the so-called activation energy, k the
Boltzman constant, θ the absolute temperature andA0

a constant. The temperature-depending rate factor in
(5) causes A to vary ±3 ◦ over a temperature range
of 50 ◦ K. Concerning the exponent n, experimental
results showed that it varies from about 1, 9 to 4, 8
in secondary creep (the strain rate is approximately
constant) and reaches values as high as 10 in tertiary
creep (the strain rate accelerates). In good approxi-
mation we can assume that in deforming ice masses
like ice sheets, secondary creep prevails for low tem-
peratures (below -10oC), whereas tertiary creep pre-
vails for higher temperatures. Therefore there is gen-
eral agreement now to use n = 3, although Glen con-
cludes that n = 3, 5 would be more appropriate. See
Hutter [13] and Paterson [18] for a better understand-
ing of these issues concerning theoretical glaciology.

2 Dynamics of ice sheets

A thorough analysis of ice sheets dynamics is made in
many monographs, for instance, Hutter [13] and Pa-
terson [18]. However, many authors deal only with 2D
mathematical models, see e.g. Fowler [10]. Present-
day 3D mathematical models including full thermo-
mechanical coupling are those developed by Huy-
brechts [14], Greve [12] and Patyn [19], to name a
few. The mathematical model approach is based on
the continuum dynamics equations (1)-(4). We con-
sider a Cartesian coordinate system (x, y, z) with the
z-axis vertically pointing upward and being z = 0 at
the mean sea level.

Field Equations. Denoting the velocity components
in the correspondingly directions as (u, v, w), (1) can
be rewritten as

∂ u

∂ x
+
∂ v

∂ y
+
∂ w

∂ z
= 0 . (6)

Once that the gravitational force is only important in
the vertical direction, i.e. considering g = (0, 0,−g),
(2) becomes

∂ Txx

∂ x
+
∂ Txy

∂ y
+
∂ Txz

∂ z
= 0, (7)

∂ Tyx

∂ x
+
∂ Tyy

∂ y
+
∂ Tyz

∂ z
= 0, (8)

∂ Tzx

∂ x
+
∂ Tzy

∂ y
+
∂ Tzz

∂ z
= ρ g, (9)

where Tij means stress in the i-plane (i = constant)
along j-direction.

Dynamic Boundary Condition. At the free surface,
say z = h(x, y, t), the model assumes that there is no
applied traction, i.e.

T · n = 0 on z = h(x, y, t) , (10)

where n is the exterior unit normal to the ice sheet
top surface z = h(x, y, t). Since (10) is related with
stresses, it is usually called the dynamic boundary
condition of the free surface. If we write the free sur-
face in the implicit form z − h(x, y, t) = 0, then n =
|∇s|−1∇s, where s(x, y, t) = z − h(x, y, t). It is a
matter of practical evidence that everywhere in an ice
sheet the slopes of the free surface z = h(x, y, t) are
small, except in a small neighborhood of ice domes
and ice margins. Thus the normal unit vector of the
free surface z = h(x, y, t) is approximately vertical
and (10) reduces to

Txz = 0 , Tyz = 0 , Tzz = 0 on z = h(x, y, t) , (11)

Hydrostatic Approximation. Applying the hydro-
static approximation in the vertical direction, i.e. pz =
−ρ g, then (9) reduces to

∂ Tzz

∂ z
= ρ g . (12)

This means that, in all parts of an ice sheet, the shear
stresses Txz and Tyz are small compared to the vertical
normal stress Tzz . Therefore the variational stress in
the z-plane can be neglected. On the other hand, if we
neglect atmospheric pressure, an integration of (12)
from the surface h(x, y, t) to a height z in the ice body
together with the usage of (11), gives us an expression
for the vertical normal stress

Tzz = ρ g(z − h) . (13)

From (3) and (13), the pressure p reads

p = ρ g (h− z)− Sxx − Syy (14)
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and the horizontal normal stresses can be expressed
as

Txx = 2Sxx + Syy − ρ g (h− z) , (15)

Tyy = Sxx + 2Syy − ρ g (h− z) . (16)

Inserting (15) and (16) in the horizontal components
(x, y) of (7) and (8), we achieve to

∂

∂ x
(2Sxx + Syy) +

∂ Txy

∂ y
+
∂ Txz

∂ z
= ρ g

∂ h

∂ x
, (17)

∂

∂ y
(Sxx + 2Syy) +

∂ Txy

∂ x
+
∂ Tyz

∂ z
= ρ g

∂ h

∂ y
. (18)

Shallow-Ice Approximation. The major simplifica-
tion of the model ensues by considering the shallow-
ice approximation. This is justified, since we assume
a physical process in which important length scales
in the longitudinal directions are much larger, com-
pared to those in the transverse directions. For in-
stance, present-day Antarctic ice sheets has a thick-
ness of 1 Km whilst its lateral extent is typically on
the order of 1000 Km. Consistently, x , y � z, and
also u , v � w, and thus the dominant stresses are
the shear stresses in the horizontal plane, Sxz and Syz ,
which are supported by the basal drag. Moreover, nor-
mal stresses Sxx, Syy, Szz are negligible , as well
the shear stress Sxy in the vertical planes. In conse-
quence,

Txx = Tyy = Tzz = −p . (19)

and, from (10)-(13), the pressure is close to hydro-
static

p = ρ g(h− z) . (20)

Then the horizontal components of (17)-(18) simplify
to

∂ Txz

∂ z
= ρ g

∂ h

∂ x
, (21)

∂ Tyz

∂ z
= ρ g

∂ h

∂ y
. (22)

On the free surface z = h(x, y, t) we obtain, after
using (11) and (19),

Txz = 0 , Tyz = 0 , p = 0 on z = h(x, y, t) , (23)

Then a vertical integration of (21)-(22) from h(x, y, t)
to a height z in the ice body, and the usage of (23),
leads us to

Txz = −ρ g(h− z)
∂ h

∂ x
, (24)

Tyz = −ρ g(h− z)
∂ h

∂ y
. (25)

From (4), strain rates are related with deviatoric
stresses by

D = A(θ)τn−1S , τ =
√
IIS , (26)

where IIS denotes the second invariant of S. Notice
that (1) implies τ =

√
1
2tr(S2) and from the simpli-

fications of the shallow ice approximation, especially
(24)-(25),

τ =
√
T 2

xz + T 2
yz = ρ g(h− z)|∇h| . (27)

A common assumption in ice sheet modeling, and
which is valid for most of the ice sheet domain, is that
horizontal gradients of the vertical velocity are small
compared to the vertical gradient of the horizontal ve-
locity, i.e. wx � uz and wy � vz . Using this as-
sumption, (24)-(25) and (27), we obtain from (26)

∂ u

∂ z
= −2A(θ) [ρ g(h− z)]n |∇h|n−1 ∂ h

∂ x
, (28)

∂ v

∂ z
= −2A(θ) [ρ g(h− z)]n |∇h|n−1 ∂ h

∂ y
. (29)

Integrating (28) and (29) from the ice base, say z =
b(x, y, t), to an arbitrary point z in the ice sheet, we
obtain

u = ub− 2(ρ g)n|∇h|n−1 ∂ h

∂ x

∫ z

b

A(θ)(h− s)nds , (30)

v = vb − 2(ρ g)n|∇h|n−1 ∂ h

∂ y

∫ z

b

A(θ)(h− s)nds , (31)

where ub = (ub, vb) is the ice velocity at the ice base.
This term is usually called the basal sliding velocity
and results from assuming the ice sheet slides, with
velocity ub, over its base. This happens when basal
ice reaches the melting point and consequently basal
melt water is produced. This water can lubricate the
bed sufficiently that the ice slides over the bed. But,
once the base reaches the melting point, we assume
the ice above remains cold.

Kinematic Boundary Conditions. Now, we shall
derive boundary conditions at the free surface z =
h(x, y, t) and at the ice base z = b(x, y, t). The
possible presence of attached ice shelves will be ig-
nored. If we write the free surface in the implicit form
s(x, y, t) = 0, with s(x, y, t) = z−h(x, y, t), then its
exterior unit normal is given by n = |∇s|−1∇s. Let
u and w denote, respectively, the ice surface velocity
and the velocity at which the free surface points move.
Then w · n represents the normal speed of propaga-
tion of the free surface and

ah = (w − u) · n (32)

is the ice volume flux through the free surface, also
known as the accumulation/ablation function. The
sign is chosen such that a supply (accumulation) is
counted as positive and a loss (ablation) as negative.
Then the time derivative of s(x, y, t) following the
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motion of the free surface with velocity w must vanish
and, by using (32), we obtain

∂ h

∂ t
+ u

∂ h

∂ x
+ v

∂ h

∂ y
− w = ahNh , (33)

where Nh =
√
h2

x + h2
y + 1. A similar boundary

condition can be derived for the ice base. We pro-
ceed as above, considering the implicit form of the ice
base r(x, y, t) = 0 (r(x, y, t) = b(x, y, t) − z), its
exterior unit normal given by n = |∇r|−1∇r and the
ice volume flux through the ice base is given by

ab = (w − u) · n . (34)

Now w is the velocity at which the ice base points
move and w · n represents the normal speed of prop-
agation of the ice base. Arguing as before, we obtain

∂ b

∂ t
+ u

∂ b

∂ x
+ v

∂ b

∂ y
− w = abNb , (35)

where Nb =
√
b2x + b2y + 1. In both cases, free sur-

face and ice base, their interior sides are identified
with the ice and therefore the exterior sides are identi-
fied with the atmosphere and the lithosphere, respec-
tively. Since (33) and (35) have been derived by ge-
ometrical considerations only, they are called kine-
matic boundary conditions. Provided that accumula-
tion/ablation functions (32) and (34) are given, equa-
tions (33) and (35) govern the evolution of the free
surface and ice base, respectively.

Ice-Thickness Equation. Using kinematic bound-
ary conditions (33) and (35) and the conservation of
mass equation (6), we can derive an evolution equa-
tion which expresses the change of ice thickness, say
H(x, y, t) = h(x, y, t) − b(x, y, t). We integrate (6)
along the vertical from the ice base z = b(x, y, t) to
the free surface z = h(x, y, t) and we use (33) and
(35) to obtain

∂

∂ x

∫ h

b

u dz+
∂

∂ y

∫ h

b

v dz+

∂ h

∂ t
−Nhah −

∂ b

∂ t
+Nbab = 0 .

(36)

Replacing, in (36), u and v by its expressions (30) and
(31), we obtain, after an integration by parts, the fol-
lowing evolution equation for the ice sheet thickness

∂ H

∂ t
+ ub · ∇H =

div

(∫ h

b

A(θ)(h− z)n+1dz|∇h|n−1∇h

)
+ a ,

(37)

where ub = (ub, vb) is the sliding velocity, A(θ) =
2(ρ g)nA(θ) and a = ah − ab is the accumula-
tion/ablation rate. We already have seen that every-
where in an ice sheet the slopes of the free surface

z = h(x, y, t) are small. The same happens with the
slopes of the ice base z = b(x, y, t). Then the exterior
normal vectors to z = h(x, y, t) and to z = b(x, y, t)
are approximately vertical and this justifies why we
have taken Nh = Nb = 1 in (37).

3 Statement of the problem
In this section we introduce the mathematical prob-
lem we shall work with and define the notion of so-
lutions we are interested. As we already have men-
tioned in Section 1, we shall consider the isothermal
case which causes in (37) that A does not depend on
θ anymore. This can be a consequence of approxi-
mately zero changes of temperature in the ice sheet,
or more generally if in the Arrhenius relationship (5)
| − Q/(kθ)| � 1 and A0 = 1. Another simplifica-
tion of the model, results from an usual assumption
in ice sheet modeling, the base b(x, y, t) is a hori-
zontal flat surface, i.e. b = constant. Under these
assumptions, and after an integration procedure (see
[10]), (37) comes

∂ H

∂ t
+ub ·∇H = div

(
Hn+2

n+ 2
|∇H|n−1∇H

)
+a . (38)

A different mathematical model was considered by
the authors in [3, 4]. There, it was used the arguing of
Fowler [11] to justify the replacement of the sliding
velocity ub by −∇H . Mathematically, (38) is a non-
linear diffusion equation for the ice-thickness, with
the additional convective term ub · ∇H , and which
degenerates for n > 1 at points where ∇H = 0 (see
Díaz [8]). On the other hand, it should be pointed out
that, from the considerations we have made in the pre-
vious section, the ice-thickness must be non-negative.

Strong formulation. When formulating mathemat-
ical models for the study of ice sheets, usually it is
necessary to take into account that the flow domain
is not prescribed and is itself part of the solution (see
Calvo et al. [9] and Rodrigues and Santos [20]). How-
ever, once in this work we are mainly interested with
local properties of the ice sheet thickness, we may as-
sume that the ice sheet based domain is known. We
assume the ice sheet occupies a sufficiently large area
where there can possibly occur the vanishing of the
ice-thickness in some relatively small subareas. In
the boundary of this large area we assume the ice-
thickness vanishes. Let us then consider the cylinder

QT := Ω× (0, T ) ⊂ R2 × R+

whose boundary is defined by ΓT := ∂Ω × (0, T )
and where Ω is assumed to be a large enough open
bounded domain with a sufficiently smooth boundary
∂Ω. Then the strong formulation of the problem can
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be stated in the following terms. Given an accumula-
toin/ablation rate function a = a(x, y, t) and a sliding
velocity ub = ub(x, y) defined in QT , and an initial
ice-thickness H0 = H0(x, y) ≥ 0, bounded and com-
pactly supported in Ω, to find a sufficiently smooth
functionH = H(x, y, t) defined onQT such that (38)
is fulfilled in QT ,

H = H0 in Ω for t = 0 , (39)

H = 0 on ΓT . (40)

The mathematical (strong) solutions of (38)-(40) must
be physically admissible, i.e. they have to be non-
negative compactly supported solutions.

General formulation. In order to obtain a more gen-
eral framework than (38)-(40), let us introduce the
new functions ν = ν(x, y, t) and b = b(s) defined
by

ν := Hm = ψ(H) =⇒ ψ−1(ν) = ν
1
m := b(ν) , (41)

where m = 2(n+ 1)/n. Notice that the new variable
ν := Hm is motivated by the relation

Hn+2

n+ 2
|∇H|n−1∇H =

m1−p

n+ 2
|∇Hm|p−2∇Hm ,

with p = n+ 1. Let us assume that:

a ∈ L∞(Ω) ; (42)

div ub = 0 in QT ; ub ∈ L∞(QT ) ; (43)

ν0 ∈ L∞(Ω). (44)

Notice that, according to (41), condition (44) is equiv-
alent to assume that H0 ∈ L∞(Ω). Then the gen-
eral formulation of (38)-(40) can be stated in terms
of ν and b as follows. Given Ω, a constant k =
m1−p/(n+ 2) and a, ub and H0 satisfying (42)-(44),
to find a function ν defined by (41) and solution of

∂ b(ν)
∂ t

= div
(
k|∇ν|p−2∇ν − ubb(ν)

)
+ a , (45)

b(ν) = b(ν0) in Ω for t = 0 , (46)

ν = 0 on ΓT . (47)

It is worth to notice that, according to (41), ν and
H have the same support and have the same value
on the boundary ΓT . Moreover, if H is a solution
of (38)-(40) then ν is a solution of (45)-(47) and re-
ciprocally. The general formulation (45)-(47) is the
one used to establish existence and uniqueness of so-
lutions (see Calvo et al. [9]) and goes back to mathe-
matical works on quasi-linear elliptic-parabolic differ-
ential equations (see Alt and Luckhaus [1], Otto [17],
Benilan and Wittbold [5], Carrillo and Wittbold [7],
Ivanov and Rodrigues [15]), being our problem a par-
ticular case.

4 Weak formulation

We start this section by introducing the notion of so-
lutions to the problem (45)-(47) we shall work with in
the sequel. We multiply (45) by a test function ζ and
integrate by parts over QT to obtain∫

QT

(
b(ν)

∂ ζ

∂ t
+ aζ

)
dz +

∫
Ω

b(ν0)ζ0 dx =∫
QT

(k|∇ν|p−2∇ν − b(ν)ub) · ∇ζ dz ,
(48)

where ζ0 = ζ(·, 0) and where we have set x = (x, y)
and z = (x, y, t). Then the definition of weak solution
follows as usual (see Alt and Luckhaus [1]).

Definition 1 . Let (42)-(44) be fulfilled. A function ν
is a weak solution of the problem (45)-(47), if:
1. ν ≥ 0 a.e. in QT and ν ∈ Lp(0, T ;W1,p

0 (Ω));
2. b(ν) ∈ L∞(0, T ; L1(Ω)) and b(ν)t ∈
Lp′(0, T ;W1,−p(Ω));
3. The relation (48) holds for every ζ ∈
Lp(0, T ;W1,p

0 (Ω)) ∩ W1,1(0, T ; L∞(Ω)), such that
ζ(·, T ) = 0.

There are now many existence and uniqueness results
which can be applied directly to the problem (45)-(47)
(Alt and Luckhaus [1], Otto [17], Benilan and Wit-
tbold [5], Ivanov and Rdrigues [15], Carrillo and Wit-
tbold [7], to name a few). One of the first references to
appear was the paper by Alt and Luckhaus [1], where
is proved (Theorem 1.7) the existence of a weak solu-
tion to a general problem which includes the case of
Definition 1. The existence result there is proved for
any

u0 = b(ν0) with B(ν0) ∈ L1(Ω)

(see (52) bellow for the definition of B) and

a ∈ Lp′(0, T ;W−1,p′(Ω)).

In order to apply Alt and Luckhaus [1, Theorem 1.7]
to the problem (45)-(47), let us define the following
functions

b : R → R , b(u) = u
1
m , (49)

a : R2×R → R2 , a(v, u) = k|v|p−2v−uub , (50)

where m, k and p = n + 1 are constants and ub is a
given vector - the sliding velocity at the ice base. One
can easily see that (49) is a nondecreasing continuous
function in R such that b(0) = 0 and (50) is a vector-
valued continuous function in R2 × R such that the
growth condition

|a(∇ν, b(ν))|p
′
≤ C1 (1 + |∇ν|p +B(b(ν))) , (51)
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hold. In (51), C1 = const. ≥ 0 and B(b(ν)) is the
Legendre transform of the primitive of b(ν)

B(b(ν)) :=
∫ ν

0

s d b(s) . (52)

It should be noticed that B is super-linear in the sense
that for any δ > 0, there exists a C(δ) < ∞, such
that for all u ∈ R, |u| ≤ δ B(u) + C(δ) . From this
property ofB it is a easy task to prove (51). The proof
of the strict monotonicity condition

(a(v, u)− a(w, u)) · (v,w) ≥ C2 |v −w|p , (53)

C2 = const. > 0, is more involved. In fact, after
some algebraic manipulations, we can prove succes-
sively

k−1a(v, u)− a(w, u)) · (v,w) =

|v|p + |w|p −
(
|v|p−2 − |w|p−2

)
v ·w =(

|v|p−2 + |w|p−2
)
|v −w|2 + |v|p−1|w|+ |v||w|p−1 ≥

C|v −w|p , C = C(p) , p ≥ 2 .

For our purposes, it is enough to consider p ≥ 2, be-
cause p = n+ 1 and, in Glaciology, it is usual to take
n = 3. An extension of the result presented in Alt
and Luckhaus [1] to the case 1 < p < 2 is given by
Ivanov and Rodrigues [15]. Moreover, Alt and Luck-
haus [1] have shown that the natural energy associated
to a weak solution ν of the problem (45)-(47) is given
by finite sum

sup
t∈(0,T )

∫
Ω

B(b(ν(·, t))) dx +
∫

QT

|∇ν|pdz <∞ , (54)

where B(b(ν(·, t))) is defined in (52). Benilan and
Wittbold [5] under rather general assumptions than
Alt and Luckhaus [1], and using the nonlinear semi-
group theory, have proved the existence of mild solu-
tions, which under certain conditions were shown to
be weak solutions. Uniqueness of weak solutions of
(45)-(47) is a much more difficult task because of the
nonlinear term b(ν). The usual approach consists in
to prove the L1-contraction principle∫

Ω

|b(ν1(·, t)−b(ν2(·, t)| dx ≤ eLt

∫
Ω

|b0(ν1)−b0(ν2)| dx
(55)

for any two weak solutions ν1 and ν2 satisfying (54) -
L is the Lipschitz constant of a(·, ·). Under the addi-
tional continuity property

|a(v, u)−a(v, z)|p
′
≤ C(1+B(u)+B(z)+ |v|p)|u−z| ,

(56)
Alt and Luckhaus [1, Theorem 2.3] also have proved
the uniqueness of a weak solution ν provided

∂ ν

∂ t
∈ L1(QT ) . (57)

It is a easy task to prove that (50) satisfies (56). Lat-
ter, Otto [17], by using Kruzhkov method of dou-
bling variables both in space and time, have proved
(55), and consequently the uniqueness result, for νi,
i = 1, 2, satisfying (54) without assuming (57). Car-
rillo and Wittbold [7] have generalized the uniqueness
result of Otto [17] and have proved a comparison re-
sult by using also Kruzhkov method.

5 Localization properties
In this section we shall establish the localization
properties of finite speed of propagations and wait-
ing time for the solutions H to the problem (38)-
(40). Existence and uniqueness of a weak solution
ν = Hm to the equivalent problem (45)-(47) have
been established in the previous section. According
to (41), that results allow us to state the existence and
uniqueness of a weak solution H for (38)-(40) and
such that, for every ζ ∈ Ln+1(0, T ;W1,n+1

0 (Ω)) ∩
W1,1(0, T ; L∞(Ω)), with ζ(·, T ) = 0, the equivalent
of (48) holds:∫

QT

(
H
∂ ζ

∂ t
+ aζ

)
dz +

∫
Ω

H0ζ0 dx =

∫
QT

(
Hn+2

n+ 2
|∇H|n−1∇H −Hub

)
· ∇ζ dz .

We define the energy associated with the problem
(38)-(40) by

E(QT ) := sup
t∈[0,T ]

∫
Ω

|H(·, t)|2dx+∫
QT

|H|n+2|∇H|n+1dz ,
(58)

which, by the same reasoning used to obtain (54), can
be proved to be finite. In order to define the notions of
the properties we want to establish, let us fix x0 in Ω
and assume that

H0(x) = 0
for x ∈ Bρ0(x0) = {x ∈ Ω :|x− x0| < ρ0} ⊂ Ω ,

(59)

where ρ0 ∈ (0,dist(x0, ∂Ω)).

Definition 2 The weak solutions of problem (38)-(40)
possess the property of:
1. finite speed of propagation, if for some x0 ∈ Ω and
t∗ ∈ (0, T )

H(x, t) = 0 a.e. in Bρ(t)(x0) ∀ t ∈ [0, t∗] ;

2. waiting time, if for some x0 ∈ Ω and t∗ ∈ (0, T )

H(x, t) = 0 a.e. in Bρ0(x0) ∀ t ∈ [0, t∗] .

Proceedings of the 5th IASME / WSEAS International Conference on Fluid Mechanics and Aerodynamics, Athens, Greece, August 25-27, 2007      6



In this section we shall assume that

div ub = 0 in QT , ub ∈ C1(0, T ;Cα(Ω)) , (60)

with 0 < α < 1. To proceed our study, let us consider
the Lagrange variables X defined as usual in Contin-
uum Mechanics (see, e.g., Meirmanov et al. [16]):

dX(x, t)
dt

= ub(X, t), t ∈ (0, T ) ; (61)

X(x, 0) = x, x ∈ Ω. (62)

Under conditions expressed in (60), there exists a
unique solution X(x, t) of the problem (61)-(62),
which is a homeomorphism between Ω and

Ωt = {y : z = X(x, t), x ∈ Ω}

for any t ∈ [0, T ]. This solution transforms the ball
Bρ(x0) into

Bt
ρ(x0) = {z : y = X(x, t), for some x ∈ Bρ(x0)}.

Moreover, the following formula hold

d

dt

∫
Bt

ρ(x0)

Φ dz =
∫

Bt
ρ(x0)

(
∂Φ
∂t

+ ub∇Φ
)
dz , (63)

dJ

dt
= J div ub, J = det

(
∂X
∂x

)
,

J(x, 0) = det
(
∂X(x, 0)
∂x

)
= 1.

(64)

In the considered case, we have that J(x, 0) =
J(x, t) = 1. We introduce the energy functions

E(ρ, t) :=
∫ t

0

∫
Bt

ρ(x0)

|H|n+2

n+ 2
|∇H|n+1dzdt,

B(ρ, t) =
∫

Bt
ρ(x0)

|H|2dz .
(65)

Notice that

∂E(ρ, t)
∂ρ

=
∫ t

0

∫
St

ρ(x0)

Hn+3

n+ 2
|∇H|n−1∇H ·ndS , (66)

where St
ρ(x0) is the boundary of Bt

ρ(x0), i.e.
St

ρ(x0) = ∂Bt
ρ(x0) and n is the unit exterior normal

to St
ρ(x0) Then, applying the results of Antontsev et

al. [2, Chapter 3], we can prove the following theo-
rem.

Theorem 3 Let H be a non-negative weak solution
to the problem (38)-(40). Assume ub satisfies (60) and
(58) is finite.

1. If (59) is verified, then there exists t∗, 0 < t∗ <
T , such that

H(x, t) = 0 a.e. in Bρ(t)(x0), ∀ t ∈ [0, t∗],

with ρ(t) given by

ρν(t) = ρν
0 −

ν

γC
tλEγ(ρ0, 0),

for some positive constants ν, λ and γ.

2. If additionally to (59), the following condition
holds ∫

Bρ(x0)

|H0|2dx ≤ D(ρ− ρ0)µ ,

for some ρ > ρ0, µ = µ(n) > 0, D > 0. then,
there exist t∗, 0 < t∗ < T , and D∗ > 0, 0 <
D ≤ D∗, such that

H(x, t) = 0 a.e. in Bρ0(x0), ∀ t ∈ [0, t∗] .

PROOF. We formally multiply (38) by H , a weak
solution of (38)-(40) and integrate by parts over
Bt

ρ(x0) × (0, s), with s ≤ t ≤ T . To be precise,
we should multiply (38) by a regularized H function,
with compact support in Ω, and then pass to the limit
in the obtained integral equation. Using (60)1 and the
notations introduced in (65)-(66), we obtain the fol-
lowing energy relation

1
2
B(ρ, t) + E(ρ, t) =

1
2
B(ρ, 0) +

∂E(ρ, t)
∂ρ

, (67)

We notice that B(ρ, 0) = 0 if ρ ≤ ρ0, which corre-
sponds to the first assertion. In this case, taking the
supreme, for s ∈ [0, t], of (67), the results of Antont-
sev et al. [2, §3.2] lead us to the ordinary differential
inequality(

sup
0≤s≤t

B(ρ, s) + E(ρ, t)
)γ

≤ Ctλρ1−ν

(
∂E(ρ, t)
∂ρ

)
,

where 0 < γ < 1, and λ, ν > 0. Integrating the last
inequality, we come to the estimate

Eγ(ρ, t) ≤ Eγ(ρ0, 0)− γ

ν
Ct−λ

(
ρ1−ν
0 − ρ1−ν

)
,

which lead us to

E(ρ, t) = 0, if ρ1−ν ≤ ρ1−ν
0 − ν

γC
tλEγ(ρ0, 0).

First assertion of the theorem is thus proved. In the
second case, we come to the nonhomogeneous in-
equality with ρ ≥ ρ0(

sup
0≤s≤t

B(ρ, s) + E(ρ, t)
)γ

≤

C

[
tλ
(
∂ E(ρ, t)
∂ρ

)
+Dγ(ρ− ρ0)γµ

]
,
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where µ ≥ 1/(1 − γ). According to Antontsev et al.
[2, §3.3], all solutions of the last inequality permit the
majority

E(ρ, t) ≤ Cγ(ρ− ρ0) , ρ ≥ ρ0

if D > 0 and t > 0 are sufficiently small. Second
assertion of the theorem is proved. ut

The results of Theorem 3 are still valid for a global
non-zero accumulation/ablation rate. Indeed, finite
speed of propagations property holds, provided we as-
sume a = 0 in Bρ0(x0) × [0, t∗]. As for the wait-
ing time property, it holds if we assume a = 0 in
Bρ0(x0)× [0, T ].

A detailed paper including the results established in
this text will be published elsewhere as soon as possi-
ble.

References:

[1] H.W. Alt and S. Luckhaus. Quasilinear elliptic-
parabolic differential equations. Math. Z. 183
(1983), no. 3, 311-341.

[2] S. N. Antontsev, J. I. Díaz and S. I. Shmarev.
Energy methods for free boundary problems,
Progr. Nonlinear Differential Equations Appl.
48, Birkhäuser, 2002.

[3] S. N. Antontsev and H. B. de Oliveira. Lo-
calization of weak solutions for non-Newtonian
fluid flows. Proceedings of the CMCE Congress.
APMTAC and SEMNI, Laboratório Nacional de
Engenharia Civil, Lisbon (2004), 15 pp.

[4] S. N. Antontsev, J.I. Díaz and H. B. de Oliveira.
Mathematical models in dynamics of non-
Newtonian fluids and in glaciology. Proceedings
of the CMNE/CILAMCE Congress. APMTAC,
SEMNI and ABMEC, Universidade do Porto,
Porto (2007), 20 pp.

[5] Ph. Benilan and P. Wittbold. On mild and weak
solutions of elliptic-parabolic problems. Adv.
Differential Equations 1 (1996), no. 6, 1053-
1073.

[6] N. Calvo, J.I. Díaz, J. Durany, E. Schiavi and C.
Vázquez. On a doubly nonlinear parabolic obsta-
cle problem modelling ice sheet dynamics. SIAM
J. Appl. Math. 63, 2 (2002), 683-707.

[7] J. Carrillo and P. Wittbold. Uniqueness of
renormalized solutions of degenerate elliptic-
parabolic problems. J. Differential Equations
156 (1999), no. 1, 93-121.

[8] J.I. Díaz. Nonlinear partial differential equa-
tions and free boundaries. Vol. I. Elliptic equa-
tions. Research Notes in Mathematics, 106. Pit-
man, Boston, 1985.

[9] N. Calvo, J.I. Díaz, J. Durany, E. Schiavi, C.
Vázquez. On a doubly nonlinear parabolic obsta-
cle problem modelling ice sheet dynamics. SIAM
J. Appl. Math. 63 (2002), no. 2, 683-707.

[10] A.C. Fowler. Modelling ice sheet dynamics.
Geophys. Astrophys. Fluid Dynam. 63, 1-4
(1992), 29-65.

[11] A.C. Fowler. Glaciers and ice sheets. NATO ASI
Ser. Ser. I Glob. Environ. Change, 48, Springer,
Berlin, 1997, 301-336.

[12] R. Greve. A continuum-mechanical formula-
tion for shallow polythermal ice sheets. Philos.
Trans. R. Soc. Lond., A 355 (1997), 921-974.

[13] K. Hutter. Theoretical Glaciology. D. Reidel
Publishing Company, Dordrecht, 1982.

[14] P. Huybrechts. A 3-D model for the Antartc-
tic ice sheet: A sensitivy study on the glacial-
interglacial contrast. Clim. Dyn. 5 (1990), 79-92.

[15] A.V. Ivanov and J.F. Rodrigues. Existence and
uniqueness of a weak solution to the initial
mixed boundary value problem for quasilinear
elliptic-parabolic equations. English translation
in J. Math. Sci. 109 (2002), no. 5, 1851-1866.

[16] A.M. Meirmanov, V.V. Pukhnachov and S.I.
Shmarev. Evolution equations and Lagrangian
coordinates. Walter de Gruyter, Berlin, 1997.

[17] F. Otto. L1-contraction and uniqueness for
quasilinear elliptic-parabolic equations. J. Dif-
ferential Equations 131 (1996), no. 1, 20-38.

[18] H. Paterson. The Physics of Galciers. Third Edi-
tion. Pergamon, Oxford, 1994.

[19] F. Patyn. A new three-dimensional higher-order
thermomechanical ice sheet model: Basic sen-
sitivity, ice stream development, and ice flow
across subglacial lakes. J. Geophys. Res. 108
(B8), 2382, doi:10.1029/2002JB002329, 2003.

[20] J.F. Rodrigues and L. Santos. Some free bound-
ary problems in theoretical glaciology. NATO
ASI Ser. Ser. I Glob. Environ. Change, 48,
Springer, Berlin, 1997, 337-364.

Proceedings of the 5th IASME / WSEAS International Conference on Fluid Mechanics and Aerodynamics, Athens, Greece, August 25-27, 2007      8


