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Abstract: - In this paper the description of the simplest variant of conservative averaging method for partial 
differential (or integro-differential) equations in cylinder type domain is given. Different types of boundary 
conditions (both linear and non-linear) are considered. As application of the method the process of intensive 
steel quenching as the time inverse ill-posed problem for the hyperbolic heat conduction for is studied. The 
conservative averaging method leads to the inverse well-posed problem. This problem is solved in closed 
form.  
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1   Introduction 
Mathematical models of various physical processes 
very often contain partial differential equations 
(PDE) with piecewise constant coefficients. If some 
of coefficients are relatively large and/or some of 
sub-domains are relatively thin in literature (e.g. [1], 
[2]) various types of averaging procedure based of 
some particular properties of the concrete problem 
are applied. Conservative averaging method was 
developed by A. Buikis in his doctoral thesis [3] (in 
Russian language) and in several papers [4] - [7] etc. 
as unified analytical (or analytically-numerical) 
approach for PDE with discontinuous coefficients 
independent of peculiarities of concrete problem. 
The conservative averaging method is substantial 
extension and generalization of such non-classical 
conditions as the concentrated heat capacity [1], [7] 
and generalized non-ideal contact condition [1]. 
Geometrically-physically the class of problems for 
which the conservative averaging method was 
adjusted could be described as mathematical models 
of various physical processes in layered media. In 
this paper we extend the method of conservative 
averaging for PDE (or integro-differential equations) 
with continuous coefficients in cylindrical domain. 
 
2    Conservative Averaging Method in 
Cartesian coordinates for Cylindrical 
Domain in 1n+R  
We will start with the statement of problem for 

differential (or integro-differential) equation with 
continuous coefficients. We consider solutions in 
classical sense, i.e. all the highest derivatives of the 
considered differential equation are continuous. 
 
2.1 Original Problem 
Let us look at domain D (see fig.1), 
where { }1( , ) : [0, ] .nD x y x H G R += ∈ × ⊂  Here 

the basis  of the cylinder  is bounded (or 
unbounded) domain .  

G D

1( ,..., ) n
ny y y G R= ∈ ⊂

x 

y1

yn

G 

Fig.1   
It is important to underline immediately that one of 
vector argument components could be time 
variable . It means the method of conservative 
averaging is applicable side by side to steady-state 
and transient processes. 

y
t

The main equation in general form looks as follows: 
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Here the operator is linear differential (either 
integral or integro-differential) operator related to 
vector-argument with coefficients which could 
depend on variable but not on argument

( )L •

y
,y .x   

On the basis of cylindrical domain (on ) we 
propose the boundary condition (BC) in general 
form: 

G

0 0 0( ) ( ) ( ).l U y L U= Φ +  
Explicitly: 

0 0 0 0( ) ( ).Uk U y L U
x

ν λ∂
− + = Φ +

∂
   (2) 

The operator  in BC (2) has properties 
identical with operator

0 ( )L U
( )L U ; such operator can 

arise by applying the conservative averaging method 
to similar with (1) PDE on thin 
cylinder { }0 [ ,0]G G x δ= × ∈ − . After the 
conservative averaging procedure, the thin 
cylinder  disappears from original statement of 
the problem and we obtain the problem for PDE (1) 
with non-typical BC (2), see, e.g. [6].    

0G

Further we consider mainly the BC without 
operator . The coefficients0L 0 01, 0λ ν= =  give the 
first type BC: 

0(0, ) ( ).U y y= Φ                1(2 )
The second type BC we obtain by 0 00, 1λ ν= = : 

0 ( ).Uk y
x

∂
− = Φ

∂
              2(2 )

Finally, the coefficients 0 0,h 1λ ν= = give the third 
type BC, where the function 0 ( )yΘ  represents 
physically the environment temperature: 

0 0 0 0 0( ), ( ) ( )Uk h U y y h y
x

∂
− + = Φ Φ = Θ

∂
.          3(2 )

The conservative averaging method is also 
applicable to non-linear BC: 

[ ]( ) 0.mUk U t
x

β∂
− + −Θ =

∂
             

 4(2 )
If here the power is equal to 10/3 it is the case of 
the so called   nucleate boiling process on the 
surface of material. 

m

Another interesting and famous case of BC is the 
heat transfer by radiation, where ε  is the emissivity 
of the surface, σ − the Stefan-Boltzmann constant: 

4 4 ( ) 0.Uk U y
x

εσ∂ ⎡ ⎤− + −Θ =⎣ ⎦∂
            

 5(2 )
On the second basis of cylindrical domain 
(at x H= ) we propose the same type of BC: 

1 1 1 1( ) ( ).Uk U y L U
x

ν λ∂
+ = Φ +

∂
   (3) 

The type of boundary condition (or conditions) on 
the side surface (on all the side surface or only on 
part of it) { \ } {0G G G x HΓ ⊆ ∂ = × ≤ ≤ } of the 
cylindrical domain  depends on the type of the 
operator

D
( ).L • We will specify the concrete form of 

the BC later and now we restrict ourselves to writing 
this linear BC in following general form: 
( ) ( , )l U x y= Ψ , ( , ) .x y ∈Γ     (4) 

Nevertheless it is important to make immediately 
two following additional remarks about BC (4). 
Firstly, as it was already written,  can be a part of 
the entire side surface. For example, if the basis of 
cylindrical domain is rectangle and one of vector 
argument  components is the time, then the BC (4) 
could be given for

Γ

y
0t = , but not for the t T= . 

Secondly, on some parts of the side surface could be 
given two (or even more) BC, e.g. for biharmonic or 
hyperbolic operator L . 
 
2.2 Transformation of the original problem  
We will transform problem (1) – (4), it means that 
we will have a different problem instead of the 
original problem. To make difference between these 
two problems clearer, we denote the new solution of 
the equation (1) as  instead of the 
function and in addition we introduce 
integral averaged function in direction

( , )u x y
( , )U x y

x : 

1
0

0

( ) ( , )
H

u y H U x y dx−= ∫ . (5) 

 Now we integrate the main equation (1). This gives 
exact equality (the operator ( )L u  is linear 
operator!): 

0
0

1

0

( ) ( ),

( ) ( , ) .

x H

x
H

k UL u f
H x

f y H F x y dx

=

=

−

∂
+ = −

∂

= ∫

y
 

We shall call this equality principal relation. As one 
can see, principal relation is underdetermined 
equation because of presence of two different 
functions: and respectively in 0 ( )u y ( , ),U x y ( , )u x y
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one equation. It means that connection between 
these functions must be determined. Next steps in 
our approach (method) depend on two factors: 

1) Assumption about the behavior of the 
function  respectively  
in

( , )U x y ( , )u x y
x− direction at fixed ; y

2) The concrete type of the BC on both bases 
of the cylindrical domain. 

The simplest assumption; the behavior of the 
function  in( , )u x y x− direction: it is weakly 
depending on variable x . Then we can assume 
following sequence of equalities: 

0( , ) ( , ) ( ) ( ).U x y u x y u y u y= ≈ =    (6) 
The second type of BC on both bases immediately 
gives the following new main equation (from the 
principal relation): 

0 1
0

( ) ( )( ) ( )y yL u
H

Φ +Φ⎡ ⎤= − +⎢⎣ ⎦
f y ⎥ .            

 2(7 )
In case of the third type of BC we express the 
“flux” term at lower base (similar action must be 
done for the upper base): 

3(2 )

0 0 0( ) (0, )Uk h y h u y
x

∂
− = Θ −

∂
. 

Finally, instead of  we obtain following main 
equation: 

2(7 )

0 1
0 0

0 0 1 1

( )

( ) ( ) ( ) .

h hL u u
H

h y h y f y
H

+
− =

Θ + Θ⎧ ⎫+⎨ ⎬
⎩ ⎭

                       

 3(7 )
Analogously as in case of the Stefan-Boltzmann 
type of BC we obtain such main equation:  

[ ] [ ]

4
0 0

4 4
0 1

2( )

( ) ( )
( ) .

L u u
H
y y

f y
H

εσ

εσ

− =

⎧ Θ + Θ⎪ +⎨
⎪⎩

⎫⎪
⎬
⎪⎭

 

For the BC we obtain following main equation: 4(2 )

[ ]

[ ]

0
0 0 0

1
0 1

( ) ( )

( ) ( ).

m

m

L u u y
H

u y f y
H

β

β

− −Θ

−Θ = −

−
             

 4(7 )
More attention must be paid to case of first type 
BC .  Formally from principal relation and 

equalities (6) follow that both “flux” terms vanish 
(become zero) and as main equation we have: 

1(2 )

0( ) ( )L u f y= − . 
The weakness of such averaged main equation is 
evident: it is independent from right hand side 
functions ( ), 0,1i y iΦ =  of BC. Assumption that 
integral averaged value  is placed near the 
middle point

0 ( )u y
/ 2x H= gives (by replacing both 

derivatives with finite differences) such main 
equation: 

[ ]

0 02

0 12

4( )

2 ( ) ( ) ( ) .

kL u u
H

k y y f y
H

− =

⎧ ⎫Φ +Φ +⎨ ⎬
⎩ ⎭

             1(7 )

The general case (the operators  are present 
in the first type BC) instead of equation  gives 
following averaged equation: 

0 1( )L L

1(7 )

[ ]

[ ]

0 0 0 1 02

0 0 1 02

2( ) ( ) ( ) 2

2 ( ) ( ) .

kL u L u L u u
H
kf u u

H

0+ + −

⎧ ⎫− + Φ +Φ⎨ ⎬
⎩ ⎭

=
 

In all cases, to the main equation (7 must be added 

BC on

)i

{ \G G Gγ ⊆ ∂ = }. The linearity of BC (4) 
immediately gives from (5) following new BC: 

0

1

0

( ) ( ), ,

( ) ( , ) .
H

l u y y

y H x y dx

ψ γ

ψ −

= ∈

= Ψ∫
    (8) 

 
3   Application of Conservative 
Averaging Method for Time Inverse 
Hyperbolic Heat Conduction Problem 
In paper [8] was proposed mixed initial-boundary 
problem for the hyperbolic heat equation as new 
mathematical model for intensive steel quenching 
process. This inverse problem was reduced to the 
first kind Fredholm integral equation. 
 
3.1 Original Problem 
 We start with the formulation of the one-
dimensional mathematical model for intensive steel 
quenching as in paper [8]: 

2 2
2

2 2 ( , ),

(0, ), (0, ), ,

r a
U U f x t

t t x
x H t T H

Uτ + =
∂ ∂ ∂

+
∂ ∂ ∂

∈ ∈ < ∞
, (9) 
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( ), 0, [0, ],
U

hU h t x t T
x

k ∂
+ = Θ = ∈

∂
⎛ ⎞
⎜ ⎟
⎝ ⎠
−  (10) 

0,U
x

x H∂

∂
= = , (11) 

0 ( ), 0, [0, ].U U x t x H= = ∈  (12) 
Here  is heat conductivity coefficient, - specific 
heat, - heat exchange coefficient,

k c
h (2 /a k c )ρ= and 

ρ  is the steel density.  
From the practical point of view the second initial 
condition is unrealistic. The initial heat flux 

0 , ,( ) [0, ]U
V

t
x x H∂

=
∂

∈ 0t =  (13) 

can’t be measured experimentally and must be 
calculated. As additional condition we assume 
experimentally realizable condition –the temperature 
distribution at the end of process is given: 

( , ) ( ), [0, ]TU x T U x x H= ∈ . (14) 
In paper [8] it was shown that the solution of this 
problem can be written in very well known form: 

2

2

0

0 0

0 0

( )( , ) ( ) ( , , ) ( ,0, )

( , )( , ) ( , , ) .

H t

t H

r

hU x t U x G x t d G x t d
c

Ud f G x t d

τ

τ

ξ ξ
ρ

ξ ττ ξ τ τ ξ τ ξ

Θ

∂

∂

= +

⎡ ⎤
+ − −⎢ ⎥

⎣ ⎦

∫ ∫

∫ ∫

τ τ−
 

Here the function ( , , )G x tξ is the Green function 
for the classical heat conduction equation  

2
2

2 (0, ), (0, ),a
U

x H t T
t

U
x

=
∂

∈ ∈
∂

∂
∂

 

with BC (10), (11) and initial condition (12). 
The representation given above can be written in 
shorter form: 

2

2

2

0 0

( , ) ( , , )

( , ) ( , , ) .
t H

r

U x t G x t

Ud G x t
τ

d

ξ

ξ ττ τ ξ∂

∂

= −

−∫ ∫ τ ξ
 (15) 

Here 2 ( , , )G x tξ is the known part of the solution’s 
representation: 

0
2

0

0

0 0

( )

( , , ) ( ) ( , , )

( ,0, )

( , ) ( , , ) .

H

t

t H

G x t U x G x t d

h G x t d
c

d f G x t d

τ

ξ ξ ξ

τ τ
ρ

τ ξ τ ξ τ ξ

Θ

=

+ −

−

∫

∫

∫ ∫

+  

Now it is possible to use the given temperature 
distribution at the end of process (14) and 
representation (15) immediately gives the Fredholm 

type integral equation of the first kind for the second 
time derivative of the temperature: 

2

2
0 0

2

( , , )

( , ) ( ) .

T H

T

r

Ud G x T

G x T U x

dτ ξ τ
τ

τ

∂
−

∂

−
=

∫ ∫ ξ
. (16) 

This problem is ill-posed, but this integral equation 
can be solved numerically, e.g., by Tikhonov 
regularization method. Then, see [8]: 

2
2

0 2

( , 0) ( , 0)( ) r
G x U xV x

t t
τ∂ + ∂ +

= −
∂ ∂

. (17) 

Here 
2

2

( , )U x t
t

∂
∂

 is approximate (regularized) 

solution of the integral equation (16). 
 
3.2 The Approximate Solution by 
Conservative Averaging Method   
By applying conservative averaging method to the 
problem (9)-(14) we obtain relatively the integral 
average temperature following boundary 
problem for ordinary differential equation: 

0 ( )u t

2
0 0

02

( ) ( ),

r
H

H
H

du du h u
dt dt c

h t f t c c H
c

τ

ρ

+ + =

Θ + =
, (18) 

0
0 (0)u 0u= , (19) 

0 ( ) Tu T u= . (20) 
We are interested to determine 

0
0

(0)duv
dt

= . (21) 

To solve this problem we split it in two sub-
problems: 

0 ( ) ( ) ( ).u t u t w t= +  (22) 
 First of them is homogeneous main equation: 

 2 0r
H

du du h u
dt dt c

τ + + =  (23) 

together with non-homogeneous initial conditions: 
0
0(0) ,u u=  0

(0) .du v
dt

=  (24) 

This problem can be solved in traditional way and 
its solution is: 

20 1
0 0( ) cosh( ) sinh( ) .r

t

u t u t v t e τβ β β
−

−⎡ ⎤= +⎣ ⎦  (25) 

Here
41 1

2
r

r H

h
c
τβ

τ
= − . (26) 
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The condition 4 rh cHτ <  is mathematically caused: 
it shows the boundedness of possibility to 
approximate the solution  by constant 
regarding

( , )U x t
x . 

The second problem has non-homogeneous main 
equation and homogeneous initial conditions: 

2

2 ( ) ( )r
H H

dw dw h hw t f
dt dt c c

τ + + = Θ + t  (27) 

(0)(0) 0.dww
dt

= =  

The solution of this problem has following form: 

[ ]

2

0

21

( ) ( ) ( ) ,

( ) ( ) ( ) , .

r

r

t t

t

r
H

w t e q t d

ht t f t e
c

τ

τ

τ τ τ

τ γ γ

−

−

= − Φ

Φ = Θ + =

∫
 

Here  is solution of the differential equation 
(23) with special initial conditions: 

( )q t

(0) 0,q =  
(0) 1,dq

dt
=  

i.e. 1( ) sinh( )q t tβ β−= . 
Hence: 

21

0

( ) sinh[ ( )] ( )r

t t

w t e t dτβ β τ τ
−

−= −∫ τΦ . (28) 

 Consequently, we have finally obtained the solution 
of the problem (18),(19),(21) as: 

[ ]

20 0
0 0

2
2

0

( ) cosh( ) sinh( )

sinh[ ( )] ( ) ( ) .

r

r
r

t

t
t

r

vu t u t t e

e t f

τ

ττ
τ

β β
β

e dβ τ γ τ τ τ
βτ

−

−

⎡ ⎤
= +⎢
⎣

− Θ +∫

+⎥
⎦

 (29) 

As the last step we use the additional information: 
the condition (20), i.e. known value at the end of the 
process. This information allows us to express 
unknown second initial condition in closed and 
simple form:  

[ ]

2
0

0 0

21

0

coth( )
sinh( )

sinh( ( )) ( ) ( ) .
sinh( )

r

r

T

T

T

r

u ev u T
T

T f e d
T

τ

τ
τ

β β β
β

β ττ τ γ τ τ
β

−

= − −

−
+ Θ∫

 (30) 

We can increase the order of the approximation for 
the solution of the original problem (9)-(14) by the 
representation with polynomial of second degree 
(the same polynomial form was used for integral 

parabolic spline in our papers [9], [10]): 

0

2 2

( , ) ( ) ( )
2

( ) .
2 12

HU x t u t m t x

e t H Hx
kH

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

⎡⎛ ⎞+ − −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎤
 (31) 

The unknown coefficients we determined 
from BC (10), (11) and it finally gives: 

( ), ( )m t e t

 
[ ]0 2 2

0

( ) ( ) 3( , ) ( ) 3 .
3 2

t u t
U x t u t x Hx H

kH H
h

Θ − ⎛ ⎞= + − +⎜ ⎟⎛ ⎞ ⎝ ⎠+⎜ ⎟
⎝ ⎠

The integration over interval [0, ]x H∈  of the main 
equation (9) practically gives the same ordinary 
differential equation (18). The only difference is in 
the same coefficient at two terms:  

( )

( )

2
0 0

02

3
3

3 ( ) ( ).
3

r
H

H

du du kh u
dt dt c k hH

kh t f t
c k hH

τ + + =
+

Θ +
+

 (32) 

The additional conditions (19)-(21) remains the 
same. It means that we can use obtained above 
formulae (25), (28)-(30) replacing the 
parameters ,β γ  by following expressions: 

41 1 ,
2 1

3

r

r
H

h
hHc

k

τβ
τ

= −
⎛ ⎞+⎜ ⎟
⎝ ⎠

.
1

3H

h
hHc

k

γ =
⎛ ⎞+⎜ ⎟
⎝ ⎠

(33)  

As it was mentioned earlier, the restriction 
4 1r

H

h
c
τ

<  

shows the boundedness of possibility to approximate 
the solution by constant. For the 
approximation of the function  by the 
representation (31) from (33) we obtain weaker 
restriction: 

( , )U x t
( , )U x t

4 1
3

r

H

h h
c k

Hτ
< + . 

This, on the one hand, is the weakness of the 
approximate solutions of inverse problem. On the 
other hand, we have obtained solutions of well 
posed problem in closed form. This solution (29) 
can be used as initial approximation for integrated 
over [0, ]x H∈  equation (17). 
 
3.3 The Approximate Solution by Other 
Boundary Conditions 
Conservative averaging method is applicable in 
cases of given non-linear boundary conditions as 
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well. We will explain the employment of our 
method for the intensive steel quenching problem 
from sub-section 3.1 with following BC: on the left 
end of the slab we have nucleate boiling type BC, 
but on the right endpoint the Stefan-Boltzmann 
radiation takes place:  

2 2

2 2
2 ( , ),

(0, ), (0, ), ,

r
U U f x t

t t x
x H t T H

U aτ + =
∂ ∂ ∂

+
∂ ∂ ∂

∈ ∈ < ∞
 (34) 

[ ]0 0 ( ) 0,

0, [0, ],

mUk U t
x

x t T

β∂
− + −Θ =

∂
= ∈  (35)

 

4 4
1 1 ( ) 0,

, [0, ],

Uk U t
x

x H t T

ε σ∂ ⎡ ⎤+ −Θ =⎣ ⎦∂
= ∈

 (36) 

0
0

( ), [0, ].
t

U U x x H
=
= ∈  (37) 

We will use the simplest approximation for the 
solution of the problem (34)-(37) by the constant 
(see formula (6)). Then we finally obtain following 
main ordinary equation: 

[ ]
2

40 0 1
0 0 02

41
1

( )

( ) ( ).

m
r

H

H

du du u U t
dt dt c

t f t
c

ε στ β

ε σ

+ − − −Θ

= − Θ +
 (38) 

This differential equation must be solved together 
with given temperatures at initial and final moments:  

0
0 (0)u = 0u , (39) 

0 ( ) Tu T u= . (40) 
This boundary problem can be solved numerically. 
After solving the problem (38)-(40) we determine 
the initial heat flux 

0
0

(0)duv
dt

= .  

 
 
4   Conclusions 
Conservative averaging method can be applied to 
steady-state and non-stationary problems. It can be 
applied to different boundary conditions, including 
non-linear and non-classical.  
Even approximation by constant might be sufficient 
in practical heat transfer problems. Sometimes the 
conservative averaging method can transform an 
inverse ill-posed problem to corresponding well-
posed problem. 
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