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Abstract: The present investigation concerns the development of advanced scalar turbulence modeling 
approaches and their application to the calculation of non-isothermal wall-bounded flow phenomena. A new 
scalar modeling technique based on scalar turbulent scales is proposed and implemented at a second-order 
modeling approach. Instead of the classical analogy concept between the mechanical and the scalar transport 
mechanisms, a scalar time scale, defined as the ratio of the temperature variance and its rate of dissipation or 
scalar dissipation rate, is used to tackle the scalar turbulence closure problem. A simple scalar Reynolds stress 
model, capable of predicting various heat transport problems, is developed and tested by comparing its results 
for a thermal boundary layer with its standard mechanical counterpart as well as first-order models like the k-ε 
model and the g-χ model, a scalar version of the standard k-ε model. Validation against experimental data is 
performed and shows clearly the benefits of adopting the right scales for the right phenomenon: mechanical 
scales for momentum transport and specific scalar scales for scalar transport. 
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1   Introduction 
The turbulent wall-bounded flows are largely 
encountered in engineering applications involving 
heat or mass transfer. The prediction of such 
problems requires the implementation of some 
robust numerical techniques to solve the partial 
differential equations governing the transport 
mechanisms. Furthermore, advanced turbulence 
closure techniques are needed to correctly model the 
combination of features specific of such flows: 
boundary layers, sublayers, etc. 

Many turbulence models have been developed, 
ranging from the simplest or the mixing length 
model to the most advanced or the Reynolds stress 
model (RSM). Despite their wide use for general 
engineering applications, these models still show 
many discrepancies when applied to wall dominated 
flows. The causes are multiple: near-wall features, 
high Reynolds models, etc.  All these causes are 
addressed in the literature by using artificial 
damping functions to force the models to become 
compatible with the vanishing turbulence intensity 
in the near-wall zone. A large number of the so-
called low-Reynolds number models were 
developed and are used for specific applications, 
especially for convective heat transfer calculations. 
None of these models can be considered as 
universal. The problem is even worst when dealing 
with the scalar transport since for such phenomena, 

additional difficulties have to be solved prior to 
using the resulting models. Among these is the 
largely used analogy concept, which appears at 
nearly all modeling levels: directly in the two-
equation models through the use of the constant 
turbulent Prandtl number hypothesis and implicitly 
in the second order closures by using similar 
turbulence scales for momentum and heat transfer 
mechanisms. The strong anisotropy of the turbulent 
fluxes is another non-negligible feature 
characterizing the turbulent transport of heat and/or 
species and should be taken into account when 
developing specific models for the scalar transport 
problem. 

The analogy problem has been addressed, at the 
level of the two-equation model, by many 
investigations [1-3]. The main idea is to represent 
each flow phenomenon by its own scales: the 
hydrodynamics by the standard mechanical time 
scale (k/ε) and the scalar transport by a specific 
scalar time scale instead of the same ratio k/ε. 
Several choices may be considered for the scalar 
time scale but a natural choice seems to be the ratio 
of the variance of temperature over its scalar rate of 
dissipation (g/χ). Such a change from k/ε to g/χ in 
modeling the scalar transport mechanism proved to 
be highly beneficial. The use of scalar scales along 
with the classical mechanical ones is more and more 
encountered in the literature [3]. 
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The anisotropy can be naturally accommodated 
by using an appropriate Reynolds stress closure. Of 
this latter kind, the present study adopts the standard 
model for its more universal nature [4]. The 
standard Reynolds stress model was then extended 
by using an appropriate scalar time scale to close the 
turbulent flux equations in a manner similar to that 
adopted for the two-equation model [3]. The ratio 
g/χ is used to model the different terms that require 
modeling in the turbulent flux equations. The result 
is a new kind of simple engineering scalar Reynolds 
stress model (SRSM), which has to be compared 
with more sophisticated Reynolds stress models and 
their cumbersome algebraic treatment like the cubic 
model [5]. 

The wall boundary conditions are critical when 
dealing with wall-bounded flows numerically. In 
spite of their shortcomings, wall functions remain 
the best solution for flows of engineering interest. In 
this regard, the present investigation makes use of 
an extended wall function approach developed 
especially to accommodate the new scalar 
turbulence parameters. 

The advantages and disadvantages of the new 
turbulence model are discussed in light of 
comparisons with experimental data. The results 
show clearly the benefits of the scalar modeling 
approach and its promising features when dealing 
with wall bounded flows. Similar improvements 
were obtained in previous investigations considering 
free flow phenomena [6]. 
 
 

2   Governing Equations 
The most appropriate equations to describe flow 
fields are the classical Navier-Stokes equations. For 
turbulent flows, however, and as a result of the 
complex nature of such flows, the more practical 
Reynolds averaged Navier-Stokes (RANS) 
equations are most often considered 
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The main problem with such transformed equations 
is the fact that they involve more unknowns than 
equations. Usually turbulence models in more or 
less elaborate forms are used to determine the 
statistical unknowns, namely, the Reynolds stresses 

jiuu  and the turbulent fluxes tu j . 

3   Turbulence Modeling 
Many turbulence models have been developed and 
are widely used, with more or less success, to 
predict different kinds of engineering turbulent 
flows. Most of these models address mainly the 
mechanical aspect of the problem, e.g., the closure 
of the momentum equation. The heat transport 
aspect is generally handled by invoking some 
analogy concepts between the transport of 
momentum and heat. Experiments show, however, 
that the analogy can be used only in few limited 
cases (Prandtl number very close to unity, simple 
boundary layer flows, etc.). A completely different 
approach is needed for the heat transport problem or 
the transport of any scalar quantity in general. The 
main idea behind such a new modeling technique is 
to make each phenomenon governed by its own 
scales. The hydrodynamic aspect will continue to be 
characterized by the same mechanical scales: the 
turbulent kinetic energy, its dissipation rate and their 
derivatives. The transport of heat or the mixing is to 
be characterized by a set of scalar scales. To this 
end, the variance of temperature g and its rate of 
dissipation, χ, or scalar dissipation rate are used. 

The second order modeling approach is based on 
the fact that all the statistical unknowns appearing in 
the RANS equations (1-3) are governed by their 
transport equations 
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where Pij and Piθ represent the generation by mean 
fields given by 
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Dij and Diθ are the diffusion terms generally 
modeled using the generalized gradient diffusion 
hypothesis 
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In the standard Reynolds stress model (RSM), the 
Reynolds analogy is taken for granted and τθ is set 
equal to τc or k/ε. The present investigation (SRSM) 
considers each diffusion phenomena to be governed 
by its own scale and the scalar time scale is then 
given by τθ=g/χ instead of k/ε. 
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The next two terms or the pressure-strain 
correlation, Φij, and the pressure-temperature 
gradient correlation, Φiθ, are the most important due 
to their role in distributing the turbulent energy 
between the different stresses and fluxes. The 
modeling of these terms was and still is the most 
debated aspect of the second order modeling 
appraoch. In the frame of the standard Reynolds 
stress model, they are modeled as the superposition 
of two effects: the slow part or turbulence-
turbulence interaction and the rapid part or the mean 
strain-turbulence interaction. 
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where  and  are modeled using the "return 
to isotropy" and the "isotropization of production" 
models [4], respectively, 
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and ( )1
ijwΦ  and ( )2

ijwΦ  are modeled using the standard 
wall reflection models 
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Fα is a function of the normal distance to the wall, 
xn, used to damp the contribution of the wall terms 
to the pressure-strain correlation in the core of the 
flow. In the present study, an enhanced form is 
proposed and used, 
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Significant improvements were obtained when using 
equation (15) in lieu of the classical form [3]. 

Similar treatment of the turbulent heat fluxes 
allows the pressure-temperature gradient correlation 
to be written as 
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and  are modeled using the following 
relationships 
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The last term of equation (4) represents the 
dissipation mechanism as modeled using the 
hypothesis of isotropic small scales. The mechanical 
dissipation rate is determined using a transport-like 
equation  
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The application of the same hypothesis to the 
turbulent fluxes leads to a null dissipation term as 
shown in equation (5). 

The set of constants used in the standard 
Reynolds stress model is given in tables 1a and 1b. 

Table 1a. Mechanical constants of the standard RSM. 

Cc C1 C2 C1w C2w Cε Cε1 Cε2

0.22 1.8 0.6 0.5 0.3 0.18 1.44 1.92

Table 1b. Scalar constants of the standard RSM. 

Cθ C1θ C2θ C1θw C2θw

0.2 3.0 0.5 0.5 0.0 

The different constants involved in the SRSM 
model can be determined using simple flow cases 
for which experimental data are available. Here a 
simple identification procedure with the standard 
model constants, in conjunction with a constant time 
scale ratio hypothesis, is used to determine the 
scalar constants. Some numerical optimizations are 
then performed and the resulting set is given in table 
2. Comparison of these values with their mechanical 
counterparts (table 1a) shows the good equivalence 
between the two sets. This means that the same 
constants may be used for different phenomena 
providing that the right scales are adopted. 

Table 2. Scalar constants of the SRSM. 

Cθ C1θ C2θ C1θw C2θw

0.2 2.0 0.5 0.2 0.0 

To complete the modeling procedure, additional 
means are needed to evaluate the scalar time scale 
components, g and χ. Like their mechanical 
counterparts, g and χ are evaluated using transport-
like equations resulting from the energy 
conservation equation. After the necessary 
manipulations and modeling, these two equations 
become [3] 
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Pg is the production terms of the temperature 
variance by the mean flow field, 

j
jg x
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∂
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Here too, the different constants can be determined 
using simple flow fields for which it is possible to 
simplify the governing equations and then solve 
them analytically. The resulting values are then 
further refined by numerical tuning to reach the set 
given in table 3. 

Table 3. Constants for the g-χ equations. 

Cg Cχ σg σχ Cχ Cχ2 Cχ3 Cχ4

0.2 0.2 1.0 1.0 1.0 0.44 1.12 0.82

It is worth mentioning that the scalar scales are 
usually incorporated automatically into advanced 
second order modeling approaches [5]. By doing so, 
an implicit recognition of the fact that the scalar 
fields should be governed in a way or another by 
their own scales is formulated. The present study 
develops such an idea to its fullest extent while 
trying to keep the models as simple as possible. 

In wall-bounded flows, the assumption of high 
Reynolds numbers ceases to be valid in the near 
wall zones where the viscous forces become non-
negligible. Special treatment is required to solve the 
near-wall behavior. The most universal approach is 
to modify the models in order to take into account 
the specific features of the near wall zone. Many 
models have been developed in this regard and 
unfortunately, none can be considered universal. 
Moreover, such models require generally very fine 
meshes near the walls, a requirement that is very 
expensive when considering flow and heat transfer 
problems of engineering interest. 

Owing to that, a simpler approach is often 
recommended, especially when considering flows of 
engineering interest where the resolution of the 
near-wall zones becomes an obstacle [7]. It consists 
of advanced wall function techniques used to jump 
over the near-wall zone from the wall itself to the 
turbulent layer. In the present study, the classical 
two-layer wall function is used for the flow and a 
scalar version is developed and used to represent the 
behavior of the scalar transport in the near wall 
region [3]. 
 
 
4   Numerical Technique 
The new turbulence model has been implemented 
into a research computational fluid dynamics code 
[3]. The well known finite volume method is used 
with different algorithms to handle the pressure-

velocity coupling and several differencing schemes 
to discretize the convective transport terms. In the 
present study, the SIMPLEC algorithm has been 
used along with a power law scheme. Staggered 
non-uniform grids are used to map the calculation 
domains. 
 
 

5   Thermal Boundary Layer 
The whole procedure is used to predict the 
hydrodynamics as well as the thermal behavior of a 
turbulent boundary layer flow developing along a 
flat plate subjected to a sudden change of surface 
heat flux, [8]. The geometry is a flat plate 3.9m long 
subjected to a heat flux of 270 W/m2 over the last 
2.4m of its length (thermal boundary layer starts at 
X0=1.5m). Air at T0=26°C is blown over the plate at 
a velocity of 9.45 m/s. The non-uniform mesh used 
consists of 220x75 control volumes along the 
streamwise and transversal directions, respectively. 
Numerical tests were carried out to ensure that the 
mesh is fine enough to result in a mesh independent 
solution without violating the requirements of the 
wall boundary conditions. 

One generally and widely used criterion to check 
the validity of numerical techniques is the overall 
heat transfer coefficient represented here by the 
Stanton number as sketched in figure 1. Here the 
results of the two second order models (RSM and 
SRSM) are compared with experimental results. The 
results obtained with the standard k-ε and a scalar 
version, the g-χ model, are also represented for 
information. 
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Fig.1. Stanton number along the plate. 

 
The superior performance of the scalar models 

appears clearly although the mechanical models 
perform not bad. Such very good agreement is due 
mainly to the better predictions obtained with the 
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scalar models concerning the temperature 
distribution across the boundary layer as shown in 
figure 2 at two different locations along the 
streamwise direction (X* being the streamwise 
distance from the entrance of the heated zone 
normalized by the boundary layer thickness at that 
entrance). Here the better representation of the 
thermal boundary layer development is shown since 
the scalar models perform much better at an earlier 
stage in the development process (figure 2a). 
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Fig.2 Mean temperature across the boundary layer, (a): 

X*=18.9, and (b): X*=42.9. 
 

The transversal turbulent fluxes are shown in 
figure 3 where similar results are obtained by all the 
models of both first and second orders, mechanical 
and scalar forms. This is something usual since most 
models are tuned to predict correctly the behavior of 
the transversal turbulent heat flux across the 
boundary layer. The SRSM seems to predict a 
slightly higher values than the other models but the 
results remains within the error margins of the 
experimental data.  
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  Fig.3 Transversal turbulent heat flux across the 

boundary layer, (a): X*=18.9, and (b): 
X*=42.9. 
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 Fig.4 Temperature fluctuations across the boundary 

layer, X*=42.9. 
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The predicted temperature fluctuations are 
compared in figure 4 with the corresponding 
experimental data. Here, obviously, the scalar 
models are shown only. The comparison between 
experiment and predictions is in favor of the g-χ 
model. It means that the SRSM should be further 
tuned or improved in order to match correctly the 
experimental results. 

Figure 5 shows the distribution of the turbulent 
Prandtl number across the boundary layer. It is clear 
that all the models fail to predict correctly Prt. The 
scalar models seem, however, much better than the 
mechanical ones in such a way that they predict a 
variable Prt and not a nearly constant as with the 
mechanical models. It is important to notice the 
ability of the scalar models to predict an increasing 
turbulent Prandtl number versus the distance to the 
wall in agreement with experimental data and 
analytical studies [9]. This is especially true far 
downstream where the two boundary layers, 
hydrodynamic and thermal, reach a steady 
development phase. 
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Fig.5 Turbulent Prandtl number across the boundary 

layer, X*=42.9. 
 
 
7   Conclusion 
As a conclusion, the scalar modeling approaches 
achieve generally better prediction than their 
standard mechanical counterparts. Advanced 
modeling approaches involving very complicated 
mathematics are not always the panacea. Simpler 
scalar modeling approaches as presented here seem 
to be an attractive alternative owing to their 
simplicity. Of course, two supplementary equations 
have to be solved. This can be, however, achieved at 
very small cost since the extra CPU time required is 

almost negligible. Furthermore, the scalar models 
deliver naturally additional quantities that may be 
needed in some applications in which the 
temperature fluctuations are critical design 
parameters. 
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