
Optimization of the Finite Volume Method Source Code

by using Polymorphism

Henning Zindler
TU Braunschweig

Institute of Heat- and Fuel Technology
Franz-Liszt-Strasse 35
38106 Braunschweig

Germany
h.zindler@tu-bs.de

Prof. Dr. techn. Leithner
TU Braunschweig

Institute of Heat- and Fuel Technology
Franz-Liszt-Strasse 35
38106 Braunschweig

Germany
r.leithner@tu-bs.de

Abstract: Often CFD programs are used for solving flow problems, that are based on finite volume
methods (FVM). The FVM solves the balance equations in an iterative process. Since the single balances
are coupled, different coupling methods like the SIMPLER (Semi Implicit Method for Pressure Linked
Equations Revised) are used. Since the solving algorithm is passed through several times during the
iteration, all time critical branching like ”if” statements should be avoided. But branching appears
several times, because of the different handling of volume elements in the middle and volume elements
with boundary conditions. This differentiation can be done once during the initialization of the algorithm
and it is not necessary to repeat the differentiation several times during the iteration. For example the
sorting of the calculation functions can be done by the polymorphism of object orientated program
languages like C++.

Key–Words: CFD, SIMPLER, Polymorphism, Optimization, C++

08.04.2007

1 Introduction

For solving flow problems like in heat exchangers
partial differential equations for momentum, mass
and energy appear. These balances are solved by
using the finite volume method, that discretizes
the balance equations over location and time. The
single balance equations are coupled by velocity,
pressure and density. For solving this coupling
several algorithms for solving the momentum and
mass balance equations at the same time are de-
veloped. The algorithm that is used as an exam-
ple in this article is the SIMPLER (Semi Implicit
Method for Pressure Linked Equations Revised).
All solving algorithms work in an iterative loop,
that solves the single balance equations one after
the other.

To set up the balance equations for each vol-
ume element several coefficients have to be cal-
culated (see table 1), that differ from each other
depending on the time period and the location
of the volume element. Figure 1 shows the array
of the volume elements for the case of an one-
dimensional transient flow through a pipe. Two

boundary condition types are regarded:

1. constant pressure at both sides of the pipe

2. constant velocity at the inlet and constant
pressure at the outlet of the pipe

If the position of a volume element is checked
during the iteration to find the correct calcula-
tion instructions for the coefficients of the bal-
ance equations, the algorithms would be slow and
dificult to unterstand. Therefore a solution, us-
ing modern object orientated program languages,
needs to be found, that orders the calculation in-
structions of the coefficients of the balance equa-
tions in the initial phase before the iteration
starts. During the iteration no further checking
is required. An efficient kernel can be achieved by
an analysis of the SIMPLER and of the virtual in-
heritance of object orientated program languages.

Proceedings of the 5th IASME/WSEAS Int. Conference on Heat Transfer, Thermal Engineering and Environment, Athens, Greece, August 25-27, 2007 243

Figure 1: Arrays of the volume elements with dif-
ferent boundary conditions; Source: [8]

2 Analysis of the SIMPLER-

Algorithm

The SIMPLER-Algorithm was published by
Patankar in [2]. Walter has found in [3] a very
good representation of the SIMPLER-Algorithm
for one-dimensional transient pipe flows, that is
used in this article. There is just one difference
in the calculation of the source term. The tran-
sient summand of the source term is calculated in
a separate operation. All calculation instructions
of all coefficients are listed in table 1.

The iteration of the SIMPLER-Algorithm for
an transient one-dimensional flow through a pipe
can be explained as follows:

1. With the help of an estimated velocity array
w∗

i+ 1

2

, an estimated pressure array p∗i and an

estimated temperature array T ∗

i the array of
the pseudo velocity w̃i+ 1

2

is calculated.

w̃i+ 1

2

=
aeeiw

∗

i+ 3

2

+ awiw
∗

i− 1

2

+ bei

aei

(1)

2. The pressure array pi is calculated by using
the array of the pseudo velocity w̃i.

amPipi = amWipi−1 + amEipi+1 + bmi (2)

3. The estimated velocity array w∗

i+ 1

2

is calcu-

lated.

aeiw
∗

i+ 1

2

= awiw
∗

i− 1

2

+ aeeiw
∗

i+ 3

2

+ bei (3)

4. With the improved velocity array w∗

i+ 1

2

the

pressure correction array p̂i is calculated.

amPip̂i = amWip̂i−1 + amEip̂i+1 + bmi (4)

5. The pressure correction array p̂i is used to
calculated the velocity array wi+ 1

2

.

wi+ 1

2

= w∗

i+ 1

2

+
Ai+ 1

2

aei

(p̂i − p̂i+1) (5)

6. The energy balance is solved.

ahP ihi = ahWihi−1 + ahEihi+1 + bhi (6)

7. All other physical state variables like den-
sity or viscosity are recalculated.

8. Return to the step 1 and repeat the entire
procedure until a converged solution is ob-
tained.

There are temporal boundary conditions (sta-
tionary, transient) and local boundary conditions
(pipe inlet, pipe outlet) that holds different con-
stant physical values like pressure, velocity or en-
thalpy. Table 1 shows that a coefficient holds a
local or temporal boundary condition, but never
a local and temporal boundary condition at the
same time. This fact can be used to implement
efficiently volume elements with combined bound-
ary conditions (temporal and local) at the same
time by using the virtual inheritance (see [4]).

Proceedings of the 5th IASME/WSEAS Int. Conference on Heat Transfer, Thermal Engineering and Environment, Athens, Greece, August 25-27, 2007 244

3 Polymorphism and virtual In-

heritance

The polymorphism is beside the encapsulation
and the inheritance one of the three most impor-
tant parts of object orientated programming. It
is a mechanism to implement software interfaces.
That means, that an object has the same syntax
but a different semantic is hidden behind this syn-
tax. This mechanism is useful during iterations,
when the calculation of coefficients looks always
the same, but the coefficients are calculated inter-
nally in a different way depending on the bound-
ary conditions. The C++ programming language
uses the mechanism of the inheritance and the key
word

”
virtual”.

In figure 2 an example of a polymorphic allo-
cation is represented. The basic class ”CalcKoeff”
defines a virtual method ”calc”. A class ”CalcK-
oeffA” is derived from the class ”CalcKoeff” and
overwrites the virtual methods. A pointer to the
object of the classes ”CalcKoeff” and ”CalcKo-
effA” would always call the own method of the
object.

CCalcKoeff *z_K = new CCalcKeoff;
CCalcKoeffA *z_KA = new CCalcKoeffA;

std::cout << z_K->calc(...);
// Output: 0.0
std::cout << z_KA->calc(...);
// Output: -3.0

The polymorphism respectively the polymor-
phic allocation is defined as the setting of a
pointer of the type ”CCalcKoeff” to an object
of the type of the derived class ”CCalcKoeffA”.
While accessing a method that is defined by the
key word ”virtual”, the pointer accesses the over-
written method of the derived class.

CCalcKoeffA *z_KA = new CalcKoeffA;

// polymorphic allocation
CCalcKoeff *z_K = (CalcKoeff*) z_KA;

z_K->calc(...);
// output: -3.0

Using this mechanism it is possible to define
several classes that are derived from the basic
class that implements their own specific methods
to calculate the coefficients depending on the po-
sition of the volume element. The instances of the
derived classes can be collected in an array of the

type of the basis class. In this way the calculation
methods can be evaluated in a loop.

// instances of the derived classes
CCalcKoeffA *z_KA = new CCalcKoeffA;
CCalcKoeffB *z_KB = new CCalcKoeffB;
...

// array of the basic class
CCalcKoeff **z_K_array = new CCalcKoeff*[n];

// polymorphic allocation
z_K_array[0] = (CCalcKoeff*) z_KA;
z_K_array[1] = (CCalcKoeff*) z_KB;

...

// calculation of the coefficient in a loop
for (int i = 0; i < n; i++)
cout << z_K_array[i]->calc(...) << endl;

Figure 2: Example of a polymorphic allocation;
Source: [8]

4 Solving the problem by vir-

tual inheritance

Using the polymorphism it is possible to overwrite
single function of the basic class. This functional-
ity would be sufficient if just a temporal or a local
boundary condition exists. But there are volume
elements that hold both boundary conditions at
the same time. This difficulty can be overcome by
using the virtual inheritance.

Proceedings of the 5th IASME/WSEAS Int. Conference on Heat Transfer, Thermal Engineering and Environment, Athens, Greece, August 25-27, 2007 245

Figure 3: Principle of the virtual inheritance;
Source: [8]

Figure 4: Class diagramm for the FVM; Source:
[8]

The polymorphic allocation uses the key word
”virtual”with functions of the basic class. The vir-

tual inheritance uses the key word ”virtual” with
classes.

A basic class is constructed, that holds all
methods that calculate the coefficients of the gen-
eral case of a middle transient volume element and
holds all physical state variables (level 1). Vir-
tual classes are derived from the basic class, that
overwrite methods for calculating coefficients for
implementing boundary conditions that are de-
scribed in table 1 (level 2). Each virtual class im-
plements just one temporal or local boundary con-
dition. A third group of classes combines tempo-
ral and local boundary conditions by the deriva-
tion of two classes at the same time, that hold
one temporal and one local boundary condition
(level 3). To avoid ambiguity the classes of level
2 must be derived virtual from the basic class be-
cause if that classes would be derived in the nor-
mal way, the classes of the third level access dif-
ferent variables of the physical state. A simplified
inheritance scheme is shown in figure 3. The full
inheritance scheme is shown in figure 4.

To save the derived classes a two-dimensional
matrix (time, location) of pointers of the basic
class is used. The pointers of the basic class are
allocated to objects of derived classes in the ini-
tial phase. In this way the coefficients could be
calculated in a loop without if-statements.

5 Example

Figure 5: Distribution of the volume elements
over the heat exchanger; Source: [8]

To check the efficiency of the new program
design a comparison between the old and the new
program design was made. The algorithm of the

Proceedings of the 5th IASME/WSEAS Int. Conference on Heat Transfer, Thermal Engineering and Environment, Athens, Greece, August 25-27, 2007 246

old program design has to check the type of each
volume element in the loop before choosing the
set of methods to calculate the coefficients.

The calculation example is a transient one-
dimensional flow through a pipe of a super heater
of a steam power plant like it is shown in figure 5.
The super heater is discretized by 10 volume ele-
ments. The flue gas is calculated quasistationary.

The convergence behavior of the algorithm is
not affected by the new program design. There-
fore the convergence conditions are not checked
any more and the algorithm runs just 106 times
to compare the calculation speed.

The gas and steam properties are read from
tables to reduce the influence of gas and steam
properties to the calculation speed.

With the new program design the calculation
velocity could be improved by 7 %.

6 Conclution

The advantage of calculation velocity of the pre-
sented program design is poor, because most of
the calculation time is used for calculating the
properties of steam and gases and solving the lin-
ear equation systems. But with the slightly en-
hanced effort in program design, a very clear pro-
gram code is generated, that concentrates all cal-
culation methods of a special boundary condition
in a specific class. The advantage in calculation
time is low in one-dimensional cases like it is cho-
sen here. But in cases of three-dimensional flow,
difficult geometries and constant gas properties
the improvement will increase.

Index of formulae

Symbol Unit Description

A m2 area
a var. coefficient
b var. source term

h J
kg

enthalpy

p Pa pressure
t s time
w m

s
velocity

x m location

∆ − difference

ρ kg
m3 density

Symbol Unit Description

xi − index of location
xe − eastern bound. of the vol. el.
xw − western bound. of the vol. el.
xE − eastern volume element
xW − western volume element
xP − central volume element
xm − mass
xh − enthalpy

x∗
− estimated variable

x̂ − correction variable
x0

− from last time step
x̃ − pseudo

References:

[1] T. Kato, Non–stationary flows of viscous and
ideal fluids in IR3, J. Func. Anal. 9, 1972, pp.
296–305.

[2] S. Patankar, Numerical Heat Transfer and
Fluid Flow, Hemisphere Publishing Corpora-
tion, 1980

[3] H. Walter, Modellbildung und nu-
merische Simulation von Naturumlauf-
dampferzeugern, Fortschritt-Berichte VDI
Reihe 6 Energietechnik Nr.: 457, Wien 2001

[4] B. Stroustrup, Die C++-
Programmiersprache, Addison-Wesley,
1998

[5] T. Löhr, Simulation stationaerer und in-
stationaerer Betriebszustaende kombinierter
Gas- und Dampfturbinenanlagen, VDI-
Fortschritt-Berichte Reihe 6 Nr.: 432,
Braunschweig 1999

[6] H. Rohse, Untersuchung der Vorgänge
beim Uebergang vom Umwaeltz- zum
Zwangsdurchlaufbetrieb mit einer dy-
namischen Dampferzeugersimulation,
VDI-Fortschritt-Berichte Reihe 6 Nr.: 327,
Wien/Braunschweig 1995

[7] K. Ponweiser, Numerische Simulation
von dynamischen Stroemungsvorgaengen
in netzwerkartigen Rohrkonstruktionen,
VDI-Fortschritt-Berichte Reihe 6 Nr.: 378,
Wiener Neustadt 1997

[8] H. Zindler, Dynamische Kraftwerkssimula-
tion durch Kopplung von FVM und PECE
Verfahren mit Hilfe von Adjungiertenver-
fahren, Der Andere Verlag (in Vorbereitung)

Proceedings of the 5th IASME/WSEAS Int. Conference on Heat Transfer, Thermal Engineering and Environment, Athens, Greece, August 25-27, 2007 247

Momentum balance / pseudo velocity

coefficient transient / standard stationary imag. b. west b. west p b. west w b. east b. east p

a0
ei

ρ0

i+ 1
2

A
i+ 1

2

∆x
i+1

2

∆t
0 - standard standard standard standard standard

b0
ei a0

eiw
0

i+ 1
2

0 - standard standard standard standard standard

bei ∆pH,i+ 1
2
Ai+ 1

2
+ b0

ei + dppi standard - standard standard standard standard standard

dppi (pi − pi+1)Ai+ 1
2

standard - standard standard standard standard standard

awi max
[

(ρw̃)i− 1
2
, 0

]

Ai− 1
2

standard - standard 0 standard standard standard

aeei max
[

−(ρw̃)i+ 3
2
, 0

]

Ai+ 3
2

standard - standard standard 0 standard 0

aei awi + aei + a0
ei +

|∆p
R,i+1

2

|

|w
i+1

2

| Ai+ 1
2

standard - standard standard standard standard standard

pressure correction / calculation of pressure feld

coefficient transient / standard stationary imag. b. west b. west p b. west w b. east b. east p

b0
mi (ρ0

i − ρi)
Ai∆xi

∆t
0 - standard standard standard standard standard

bmi b0
mi + (ρw∗A)i− 1

2
− (ρw∗A)i+ 1

2
standard - standard 0 standard 0 standard

bmi,pseudo b0
mi + (ρw̃A)i− 1

2
− (ρw̃A)i+ 1

2
standard - standard p1 standard pn standard

amWi (ρA)i− 1
2

A
i− 1

2

aei−1
standard - standard 0 0 0 standard

amEi (ρA)i+ 1
2

A
i+ 1

2

aei
standard - standard 0 standard 0 standard

amPi amWi + amEi standard - standard 1 standard 1 standard

energy balance

coefficient transient / standard stationary imag. b. west b. west p b. west w b. east b. east p

a0
hPi

ρ0
i Ai∆xi

∆t
0 - standard standard standard standard standard

b0
hi a0

hPih
0
i 0 - standard standard standard standard standard

bhi max
[

Q̇, 0
]

+ b0
hi standard - (w 3

2
> 0)?h1:standard standard standard (wn− 1

2
< 0)?hn:standard standard

ahWi max
[

(ρw)i− 1
2
, 0

]

Ai− 1
2

standard - 0 standard standard (wn− 1
2

< 0)?0:standard standard

ahEi max
[

−(ρw)i+ 1
2
, 0

]

Ai+ 1
2

standard - (w 3
2

> 0)?0:standard standard standard 0 standard

ahPi ahWi + ahEi + a0
hPi +

max[−Q̇,0]
hi

standard - (w 3
2

> 0)?1:standard standard standard (wn− 1
2

< 0)?1:standard standard

Table 1: Coefficient calculation with different boundary conditions; Source: [8]

Proceedings of the 5th IASME/WSEAS Int. Conference on Heat Transfer, Thermal Engineering and Environment, Athens, Greece, August 25-27, 2007 248

