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Abstract: The analytical solutions of the systems of Laplace’s differential equations of transfer laws in the 

body with n binding degrees of freedom are presented. It is suggested that potential fields are one-, two- and 

three-dimensional. Laplace’s differential equations are analysed in Cartesian, cylindrical and spherical 

coordinates taking into account various boundary conditions. There are two specific problems solved in the 

paper. The solutions presented in the paper increase the possibility of employing these systems in practice. 
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1   Introduction 
It is known that the potential u =u(x,y,z) satisfies 

Laplace’s equation 
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if u is a temperature potential, the potential of the 

stationary electromagnetic field, a material filtration 

potential, the potential of the speed of non-vortex 

non-compressible liquid flow, the potential of the 

gravitational force in all space points not being in 

the masses created space, the potential of the 

electrical charges interaction in all points of charge-

free region of space, the potential of the definition 

of castings quality, and so on. 

Therefore the solutions of Laplace’s equations 

with the corresponding boundary conditions attract 

attention of many researchers [1-8]. In this paper, it 

is presented a method of the solution of Laplace’s 

differential equations system expressed in the form: 
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ni ,...,2,1=  

or corresponding form in cylindrical and spherical 

coordinates under different boundary conditions. 

The system of equations (1) describes the law of 

transfer for a nonequilibrum system (or body) with n 

by connected degrees of inner freedom and three-

dimensional fields of potentials Pj = Pj(x,y,z), where 

j
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=  is a generalized potential; 

( )nEEEfU ,...,, 21=  is an internal energy of a 

system, J; Lij – a coefficient of transfer and Lij = Lji. 

The coefficient Lii is called a principal coefficient of 

transfer. It characterises conductivity of a 

thermodynamic system in relation to a charge 

integrated with potential Pi. Coefficient Lij when i ≠ 
j is called a cross-coefficient. It characterises the 

influence of j-th charge on potential Pi integrated 

with it [9]. 

 

 

2   Method of the solution 
A system of equations (1) after some 

transformations: 
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is expressed as 
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So equation (1) in Cartesian coordinates can be 
written in the form: 
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in cylindrical coordinates - in the form: 

0
11

2

2

2

2

2
=++









z

uu

rr

u
r

rr

iii

∂

∂

∂ϕ

∂
∂
∂

∂
∂

                   (3) 

or in spherical coordinates - in the form: 
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Thus, the procedure of theoretical solutions of 

transfer differential equations of a thermodynamic 

system with n binding degrees of freedom is the 

following: 

1. Find the solution ui of equations Laplace’s of a 

kind (2), (3) or (4) under appropriate boundary 

conditions. The well-known formulas indicated in 

works on equations of mathematical physics can be 

used as the basis for this purpose. 

2. After determination of the free members 

(functions ui) find generalized potentials Pj of a 

thermodynamic system. The system of linear 

(concerning potentials Pj) of equations can be 

solved by various ways, for example, Cramer’s rule 

can be applied [10]: 
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3   Examples of the solving procedures 
In one dimension, the equations (2), (3) and (4) have 

the forms: 
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In two dimensions, the thermodynamic potentials 

are defined by the following systems of differential 

equations: 

in Cartesian coordinates: 
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in cylindrical coordinates: 
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or 
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and in spherical coordinates: 
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The equation (7), noting (5), can be expressed as 
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The equations (8) and (9), noting (5), can be 

expressed analogously. Consequently, the 

calculation of two-dimensional thermodynamic 

potentials Pj = Pj(x,y) consists of two steps. In the 

first step, Laplace’s equation (10) is solved using 

respective boundary conditions. In the second step, 

the system of equations (5) is solved.  

Some problems solved using the 

recommendations of the work [11] are presented 

below. 

Example 1. The thermodynamic potentials P = 

P(r,z) in a solid and finite dimensions body (0 ≤ r ≤ 
a, 0 ≤ z ≤ l, axis z is symmetry axis of the cylinder) 

satisfy the following boundary conditions: 

P z lj = =0, ,                 0 < r < a; 

P F r zj j= =( ), ,0          0 < r < a;  

∂

∂

P

r
h P r a

j

i j+ = =0, ,   0 < z < l 

where Fj(r) is a bounded function; i = j = 1,2,...,n. 
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In this case Laplace’s equation has the form 
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The thermodynamic potentials are calculated 

from the equations (12) using known functions ui. In 

this case, it is necessary to solve the equation (11) 

under the following conditions: 
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Functions ui are defined by  
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where αik are positive roots of equation: 
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J0(x), J1(x) are first-order cylindrical functions, 
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If Fj(r) = Pj0 = const, then the equation (13) can 

be written as 
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The solutions of this equation are used in the 

equation (12) for obtaining potentials Pj(r,z).  

If Pj = Pj(r,z) satisfy the following boundary 

conditions 
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then ui is calculated:  
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where αik are roots of equation (14), fj(r) are defined 

functions, 
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Using the values of ui, found above, the 

thermodynamic potentials are calculated from the 

equations (12). 

In three dimensions, the thermodynamic 

potentials are defined by the following systems of 

differential equations: 
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By introducing the designation (5), the equation 

(17) assumes the form of the equation (2). 

A specific problem in a case of three-

dimensional thermodynamic potentials is given 

below.  

Example 2. The three-dimensional system is 

given as 0 ≤ x ≤ a, -b ≤ y ≤ b, -c ≤ z ≤ c. The 
potentials Pj = Pj(x,y,z) satisfy the following 

boundary conditions 
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In this case the functions ui are calculated from 

the equations (2) under the following conditions: 
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The solution is expressed as follows: 
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αir and βis are positive roots of equations: 
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The solutions considerably facilitate the 

numerical methods [12-14] put into solutions of the 

thermodynamics systems with n binding degrees of 

freedom and increase the possibility of employing 

these systems in practice. 

 

 

4   Conclusions 
A procedure for the solution of the systems 

differential equations of transfer laws in the body 

with n binding degrees of freedom is presented. The 

one-, two- and three-dimensional potential fields are 

analyzed. Laplace’s differential equations are 

analysed in Cartesian, cylindrical and spherical 

coordinates taking into account various boundary 

conditions. The solutions considerably increase the 

possibility of employing Laplace’s equations in 

thermodynamics. 
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