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Abstract: Presented in this paper is an analytic approximation to the thermal-fluid problem involving mixed convec-
tive heat transfer from a rotating isothermal cylinder placed in a non-uniform stream shear flow. The approximation
is obtained using a series expansion of the scaled boundary layer equations in terms of an appropriate boundary
layer variable. The resulting approximation is valid both for small time and for moderate and large times for which
the Reynolds number of the flow is sufficiently large.
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1 Introduction

The steady and unsteady heat transfer problems in-
volving fluid flows past a circular cylinder have been
extensively studied numerically, and theoretically as
well as experimentally (for a comprehensive list of
references, see [1,2]). In addition to their direct ap-
plications in science and engineering, such flows ex-
hibit the main characteristics commonly observed in
most industrial problems and therefore can serve as
prototypes for simulating many fundamental fluid dy-
namics problems [3-4]. However, most studies have
focussed on forced and mixed heat transfer problems
associated with uniform stream flows [1-7].

In the present study, the thermal-fluid flow problem
involving mixed convective heat transfer from a rotat-
ing circular cylinder placed in a non-uniform stream
of shear flow is considered. While the focus of previ-
ous studies involving shear flows past a cylinder has
been on the flow characteristics such as vortex shed-
ding, boundary-layer separation and hydrodynamic
forces, the focus of the present study is on the convec-
tive heat transfer processes. This problem has a direct
relevance in a wide range of scientific and engineer-
ing applications including atmospheric flows, heat ex-
changer systems, and energy conservation [8,9].

This study is a direct extension of the recent work
of Abdella and Nalitolela [10] which investigated the
two-dimensional forced convective heat transfer prob-
lem of the unsteady shear flow of a viscous incom-

pressible fluid past a rotating circular cylinder. The
heat transfer process is investigated using an analyt-
ical approximation obtained using a series expansion
of the flow variable in terms of a boundary layer vari-

ableλ =

√
8t
Pe

wheret measures time and Pe repre-

sents the Peclet number. The analytic approximations
are therefore valid for the initial stages of problems
involving small and moderate Reynolds numbers as
well as for moderate and large times of sufficiently
large Reynolds number problems.

2 Governing Equation

Consider the problem of mixed convection heat trans-
fer from an unsteady flow past a circular cylinder of
radiusa centred at the origin and rotating at an angular
velocity ofΩ0. The flow is assumed to be viscous and
incompressible. It is also assumed that the flow re-
mains laminar and two-dimensional for all times and
for all parameter values considered in this paper. The
surface of the cylinder is kept at a constant temper-
atureT0 while the approaching stream with constant
shearU(y) = −γy − U0 is kept at constant tempera-
tureT∞ wherex andy are the usual Cartesian coor-
dinates. The temperature differenceδT = T0 − T∞
is assumed to be positive, giving rise to the buoyancy
force and inducing fluid motion.
Applying the Boussinesq approximation and neglect-
ing the effects of viscous dissipation and radiation the
governing equations are given by the equations of mo-
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tion and the energy equation:

∂ζ

∂t
+u

∂ζ

∂x
+v

∂ζ

∂y
= ν

(
∂2ζ

∂x2
+
∂2ζ

∂y2

)
+αg

∂T

∂x
(1)

ζ =

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
(2)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= κ

(
∂2T

∂x2
+
∂2T

∂y2

)
(3)

where t is time, g is acceleration due to gravity,α

is the thermal expansion coefficient,u = −∂ψ
∂y

and

v =
∂ψ

∂x
are the velocity components in thex andy

directions respectively,ζ =
∂v

∂x
− ∂u

∂y
is the vorticity,

ψ is the stream function,T is the temperature,ν is the
kinematic viscosity andκ is the thermal diffusivity.
Introducing the following non-dimensional quantities

x′ =
x

a
, y′ =

y

a
, u′ =

u

U0
, v′ =

v

U0
, t′ =

tU0

a

ψ′ =
ψ

aU0
, ζ ′ =

aζ

U0
, φ′ =

T − T0

δT
, v =

v′

U0
,

and using the modified polar coordinates(ξ, θ) where
ξ = ln r equations 1-3 become

e2ξ ∂ζ

∂t
=

∂ψ

∂θ

∂ζ

∂ξ
− ∂ψ

∂ξ

∂ζ

∂θ
+

2
Re

(
∂2ζ

∂ξ2
+
∂2ζ

∂θ2

)

+ eξ
Gr

2Re2

(
cos θ

∂φ

∂ξ
− sin θ

∂φ

∂θ

)
(4)

e2ξζ =

(
∂2ψ

∂ξ2
+
∂2ψ

∂θ2

)
(5)

e2ξ ∂φ

∂t
=
∂ψ

∂θ

∂φ

∂ξ
−∂ψ
∂ξ

∂φ

∂θ
+

2
Pe

(
∂2φ

∂ξ2
+
∂2φ

∂θ2

)
(6)

where we have dropped the primes.Here the Reynolds,
Peclet and the Grashof numbers are defined respec-
tively as

Re=
2aU0

ν
, Pe= RePr, and Gr= RaPr

where Ra=
gαδT (2a)3

νκ
is the Rayleigh number and

Pr =
ν

κ
is the Prandtl number. We also use the

Richardson number, Ri=
Gr

Re2
.

Note that, it is convenient to introduce the new(ξ, θ)
coordinate system which maps the surface of the

cylinder to ξ = 0 and the infinite region exterior
to the cylinder to the semi-infinite rectangular strip
ξ ≤ 0, 0 ≤ θ ≤ 2π.
The boundary conditions on the surface of the cylinder
for t > 0 include the usual no-slip, the impermeability
and isothermal conditions:

ψ = 0,
∂ψ

∂ξ
= Ω, andφ = 1, on ξ = 0 (7)

whereΩ =
aΩ0

U0
is a non-dimensional angular ve-

locity. The free stream conditions far away from the
cylinder surface are:

φ→ 0, ζ → K, and (8)

ψ → K

4
e2ξ +V eξ sin(θ)−K

4
e2ξ cos 2θ as ξ → ∞

(9)
whereK =

aγ

U0
is a dimensionless shear parameter

andV is the dimensionless centre-line velocity tak-
ing on the values 0, 1 or -1 depending on the stream
flow direction. Since the flow variables are periodic
with respect toθ, we invoke the following periodicity
condition:

χ(ξ, θ, t) = χ(ξ, θ + 2π, t), (10)

whereχ represents the flow variablesψ, ζ or φ. Note
that, on the surface of the cylinderψ is overdeter-
mined since it has two boundary conditions whileζ
is underdetermined. To resolve this, we apply Green’s
Second identity which is given by:∫ ∫

D

(
g52 h− h52 g

)
dA =

∫
C

(
g ∂h

∂n − h ∂g
∂n

)
dS

whereg and h are twice differentiable functions in
the regionD, C is the closed curve representing the

boundary ofD and
∂

∂n
represents the normal deriva-

tive. Then usingψ for g and the harmonic functions
e−mξ sin(mθ) and e−mξ cos(mθ) for h in Green’s
identity, we obtain the following global integral con-
ditions:

1
π

∫ ∞

0

∫ 2π

0
e(2−m)ξζ sin(mθ)dθdξ = 2V δ1,m,

(11)
1
π

∫ ∞

0

∫ 2π

0
e(2−m)ξζ cos(mθ)dθdξ = −Kδ2,m,

(12)
1
π

∫ ξ∞

0

∫ 2π

0
e2ξζdθdξ = Ke2ξ∞ − 2Ω. (13)

form = 1, 2, ..., and whereδi,j is the Kronecker delta
function which is zero wheni 6= j and 1 wheni = j.
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Therefore, these integral conditions essentially con-
vert the surface and the free stream boundary condi-
tions into conditions that are valid throughout the en-
tire domain of the problem.
Finally, we have the following initial conditions:

ζ(ξ, θ, t = 0) = 0, ζ(ξ, θ, t = 0) = 0, (14)

φ(ξ, θ, t = 0) =

{
1 if ξ = 0
0 if ξ 6= 0.

(15)

Note that the initial temperature distribution is singu-
lar and therefore results in a thin boundary-layer re-
gion close to the surface of the cylinder.

3 Approximate analytic solutions

The governing equations described in the previous
section are highly nonlinear. Therefore, it is not possi-
ble to obtain analytical solution valid for all time and
all flow parameter values. In this section we obtain ap-
proximate solutions for the early development of the
flow and the heat transfer process using series expan-
sion in terms of an appropriate boundary layer param-
eter. Recall that the structure of the flow field and
heat transfer process in the initial stages of the flow is
characterized by a thin boundary layer-region near the
cylinder surface. By examining the dominant terms of
the initial solutions, it can be shown that the thickness

of this boundary layer is given byλ =

√
8t
Pe

which

measures the diffusive growth of the boundary-layer
structure and is used to rescale the space coordinate
ζ and the flow variables via the changes of variables

ξ = λz, ψ = λΨ, ζ =
ω

λ
, φ =

Φ
λ

Hence the

thin boundary-layer is stretched and the initial singu-
larity is removed with this change of variables and the
governing equation become:

∂2ω

∂z2
+

2
Pr
e2λz

(
z
∂ω

∂z
+ ω

)
=

2
Pr
λe2λz ∂ω

∂λ
−λ2∂

2ω

∂θ2

−Reλ2

2

(
∂Ψ
∂θ

∂ω

∂z
− ∂Ψ
∂z

∂ω

∂θ

)
− eλzRaΓ (16)

e2λzω =

(
∂2Ψ
∂z2

+ λ2∂
2Ψ
∂θ2

)
, (17)

∂2Φ
∂z2

+ 2e2λz
(
z
∂Φ
∂z

+ Φ
)

= 2λe2λz ∂Φ
∂λ

− λ2 ∂
2Φ
∂θ2

−Peλ2

2

(
∂Ψ
∂θ

∂Φ
∂z

− ∂Ψ
∂z

∂Φ
∂θ

)
, (18)

whereΓ =
Prλ
4Re

(
cos θ

∂Φ
∂z

− λ sin θ
∂Φ
∂θ

)
.

We now use the following single series expansions in
λ in order to obtain analytic approximate solutions of
the governing equations and the accompanying initial
and boundary conditions:

Ψ = Ψ0 + λΨ1 + λ2Ψ2 + ... (19)

ω = ω0 + λω1 + λ2ω2 + ... (20)

Φ = Φ0 + λΦ1 + λ2Φ2 + .... (21)

Note thatλ is a small parameter not only whent is
small but also when Re is large. Therefore, these ap-
proximations are valid not only for small times but
also for large times for problems with large Re. While
the double series expansion used in [11] and [12] sim-
plifies the analytic calculations, it is more advanta-
geous to use the single expansion used in this paper
since the validity of the single expansion inλ would
only require thatλ be small which can be achieved
for moderate and large times provided that Re is suf-
ficiently large. However, the double series expansion
is valid only for small times. Substituting the above
single expansions into the boundary layer equations
and equating like powers ofλ results in a hierarchy
of boundary value problems for the expansion coeffi-
cients.

3.1 Linear approximation for all values of Pr

TheO(1) andO(λ) boundary value problems for the
mixed convection case turn out to be independent of
Ra. Therefore, theO(1) approximations which are
valid for all values of Pr are identical to those found
in [10] for the forced convection case and are given
by:

Φ0 = 0 and ω0 = A0(θ)fe−(fz)2 (22)

Ψ0 = Ωz +A0(θ)
√
π

2

(
zerf(fz) +

e−(fz)2 − 1
f
√
π

)

(23)

wheref =
1√
Pr

and

A0(θ) =
2√
π

(
2V sin θ −K cos 2θ +

K − 2Ω
2

)
.

(24)
Similarly theO(λ) approximations are identical to the
forced case obtained in [10]:

Φ1 = erfc(z). (25)

ω1 = K +A1(θ)erfc(fz) −A0(θ)
√
π

4
erfc(fz)
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−1
2
A0(θ)e−(fz)2)

(
2f3z3 + fz

)
. (26)

Ψ1 =
Kz2

2
+

1
16f2

Fm(θ)
(
erf(fz) − 2f2z2erfc(fz)

)

−ze
−(fz)2

8f
√
π
Fp(θ) +

zA1(θ)
f
√
π
, (27)

where
Fp(θ) =

√
πA0(θ) + 4A1(θ)

Fm(θ) =
√
πA0(θ) − 4A1(θ)

A1(θ) = 2V sin θ − 2K cos 2θ.

3.2 Higher order approximations for Pr=1

Since the second and higher order approximations
turn out to be analytically intractable for general val-
ues of Pr, we assume that Pr=1 for these approxima-
tions.

3.2.1 TheO(λ2) approximation

The second order approximation is obtained by col-
lecting theO(λ2) terms resulting in the following
boundary value problems:

∂2Φ2

∂z2
+2z

∂Φ2

∂z
−2Φ2 = −4z2

(
z
∂Φ0

∂z
+ Φ0 +

∂Φ1

∂z

)

−∂
2Φ0

∂θ2
− Pe

2

(
∂Ψ0

∂θ

∂Φ0

∂z
− ∂Ψ0

∂z

∂Φ0

∂θ

)
(28)

∂2ω2

∂z2
+ 2f2z

∂ω2

∂z
− 2f2ω2 = −4f2z2

(
z
∂ω0

∂z

+ω0 +
∂ω1

∂z

)
− ∂2ω0

∂θ2
+

Racos(θ)
2
√
πRe

e−z2
(29)

∂2Ψ2

∂z2
= 2z2ω0 + 2zω1 + ω2 −

∂2Ψ0

∂θ2
(30)

subject to boundary conditions

Ψ2 = 0,
∂Ψ2

∂z
= 0, and Φ2 = 0 on z = 0,

(31)
Φ2 → 0 and ω2 → 0 as z → ∞ (32)

and the integral conditions,

1
π

∫ ∞

0

∫ 2π

0
T (z, θ) sin(mθ)dθdz = 0, m = 1, 2, ...

(33)

1
π

∫ ∞

0

∫ 2π

0
T (z, θ) cos(mθ)dθdz = 0, m = 1, 2, ...

(34)
1
π

∫ ξ∞

0

∫ 2π

0

(
ω2 + 2zω1 + 2z2ω0

)
dθdz = 2Kz2

∞.

(35)
where

T (z, θ) =

(
ω2 + (2 −m)zω1 +

(2 −m)2

2
z2ω0

)
.

Solving equation 28 withf = 1 and with respect to
theΦ2 boundary conditions yields

Φ2 = −1
2
zerfc(z) − z2e−z2

√
π

. (36)

Similarly, solving equation 29 withf = 1 subject to
the free-stream condition onω2, gives:

ω2 = A2(θ)z +A3(θ)(e−z2
+

√
πzerf(z))

− 1
2
√
π
A1(θ)(2z2e−z2 −

√
πzerf(z))

+
1
24
A0e

−z2
(
9z2 − 2z4 + 12z6

)

+
1
16

√
πzerf(z)

(
2ReΩA′

0(θ) − 3A0(θ)

− 4A′′
0(θ)

)
+

1
96

ReA0(θ)A′
0(θ)

(
6πzerf2(z)

+ 8ze−z2
+

√
πerf(z)(3 − 6z2)e−z2

)

− 6ze−2z2 − Racos (θ)
8Re

√
π
e−z2

− Racos (θ) z3

24Re
(37)

where

A3(θ) = − 1
2
√
π

(2A2(θ) +A1(θ)) +
1
16
(
4A′′

0(θ)

+3A0(θ) − ReA′
0(θ)(2Ω +

√
πA0(θ))

)
(38)

Applying the integral condition given by equations
33-35 then gives the functionA2(θ):

A2(θ) = a0 +
4∑

i=1

(ai sin(iθ) + bi cos(iθ)) (39)

where
a0 = 0, a1 = −V,

a2 =
−Re

(
6πV 2 + 3πK2 − 4KΩ + 4V 2 + 2K2

)

6π
,

a3 = 0, a4 =
ReK2(3π + 2)

6π
,
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b1 = −V Re
3πK + 2K − 2Ω

3π
, b2 = 3K,

b3 = ReV K
3π + 2

2π
, b4 = 0. (40)

Finally, integrating equation (30) subject to the sur-
face boundary condition forΨ2 yields:

Ψ2 = A4(θ)z +A5(θ) +K
z3

3
+

A3(θ)
192

√
π(

32
√
π(z2 + 1)e−z2

+ πzerf(z)(32z2

+ 48))
1
6
z3A2(θ) +

A1(θ)
192

√
π

(
64
√
πz3

+ 24
√
πzerf(z) − 48z2(e−z2

+
√
πzerf(z))

)

+
√
π

192
ReA′

0(θ)erf(z)
(
2
√
πz3erf(z)

− 3
√
πzerf(z) − 11e−z2

+ 4z2e−z2 − 4
)

+
√
π

96
ReA′

0(θ)
(
ze−2z2

+
√

32πerf(
√

2z)
)

+
√
π

192
zA0(θ)

(
erf(z)(10z2 − 9) − 16

√
πz2

)

+
1
32
z2A0(θ)e−z2

(
4z2 + 3

)

+
1
96

ΩReA′
0(θ)z

(√
πerf(z)(2z2 − 3)

+ 2e−z2
(z2 − 2)

)
− 1

16
zA′′

0(θ)
(√

πerf(z)F1(z) + 2z(e−z2 − 2)
)

− 1
480

Racos (θ)
(
30zerf (z)

√
π + 30e−z2

)

Re
√
π

− 1
480

Racos (θ)
(
z5√π − 30

)

Re
√
π

(41)

where the functionsA4(θ) andA5(θ) determined by
applying the surface boundary conditions are given by

A4(θ) = −ReA′
0(θ)A0(θ)
48

, (42)

A5(θ) = −1
6
A3(θ) +

1
24

ReΩA′
0 (43)

3.3 Higher order approximation

The boundary value problems forωn andΨn, asso-
ciated with the third and higher order approximations
are too complex to solve analytically. Therefore, we
only consider theΦ3 problem which is given by:

∂2Φ3

∂z2
+ 2z

∂Φ3

∂z
− 4Φ3 = −8

3
z3
(
z
∂Φ0

∂z
+ Φ0

)

−4z3 ∂Φ1

∂
− 4z

(
z
∂Φ2

∂z
+ Φ2

)
− ∂2Φ1

∂θ2
(44)

−Re
2

(
∂Ψ1

∂θ

∂Φ0

∂z
+
∂Ψ0

∂θ

∂Φ1

∂z
− ∂Ψ1

∂z

∂Φ0

∂θ
− ∂Ψ0

∂z

∂Φ1

∂θ

)

subject to

Φ3 = 0, on z = 0, and Φ3 → 0 as z → ∞.
(45)

Then, solving equation (44), we obtain the following
expression forΦ3:

Φ3 = A6(θ)F1(z) +A7(θ)F2(z) − 3z2

− 17
32

erf(z) +
17

16
√
π
ze−z2 − 1

2
√
π
z3e−z2

+
1
16

ReA′
0(θ)zerf(z)e−z2

+
31
16
z2erf(z)

+
1

2
√
π
z5e−z2

+
1

12
√
π

ReA′
0(θ)e

−z2

+
√
πF1(z) (I1(z)erfc(z) + I3(z)

−
√
π

2
erfc(z)erfi(z) +

1
32

ReA′
0(θ)erf2(z)

)

+ 2zI2e−z2
(46)

where I1(z)=
∫ z
0 erf(s)es

2
ds, I2(z)=

∫ z
0 erfc(s)es

2
ds,

and I3(z) =
∫ z
0 erfc(s)2es

2
ds, F1(z)=1 + 2z2,

F2(z)=2ze−z2
+
√
πF1(z)erf(z). It can be shown that

I1(z)= 1√
π
z2

2F2

(
1, 1; 3

2 , 2; z
2
)
,I2(z)=

√
π

2 erfi(z)-
I1(z) where 2F2 is the generalized hypergeometric
function.
Then applying the boundary conditions of equation
45, we obtain

A6(θ) = −ReA′
0(θ)

12
√
π
,A7(θ) =

c1 + c2ReA′
0(θ)

96π
+ C

(47)
where c1 = 51

√
π, c2 = (8 − 3π), and C =∫∞

0 erfc2(s)es
2
ds = .39107.

Note that there is no Ra term in the expression forΦ3.
In fact, it turns out that the leading Ra dependence
term is order five. It can be shown that the leading Ra
dependence ofΦ is given by:

Φ5(Ra) = − 1
16π

F (z)Rasin(θ) (48)

F (z) = f1(z)+(f2(z)) e(−z)2 +f4(z)e−2z2
+f5+f6

where

f1(z) =
(

1
18
z8 +

13
36
z6 +

37
72
z4 − 5

48
z2
)
e−2z2

f2(z) =
√
π

(
z9

9
+

7z7

9
+

17z5

12
+
z3

2
+
z

3

)
erf(z)

Proceedings of the 5th IASME/WSEAS Int. Conference on Heat Transfer, Thermal Engineering and Environment, Athens, Greece, August 25-27, 2007   5



f3(x) =
720z5π − 14400

√
π − 5z6π3/2 + f3a

4800z5π − 144000
√
π

f3a = 150zπ − 10z8π3/2 + 300z3π − 8z10π3/2

f4(z) =

(
−πz

10

18
− 5πz8

12
− 11πz6

12
− 5πz4

8

−9πz2

32
− 3π

64

)
erf(z)2e(2z2) +

(
−
√
πz9

9

−7
√
πz7

9
− 17

√
πz5

12
−

√
πz3

3

)
erf(z)e(z2)

+
1
12

− z8

18
− 13z6

36
− 37z4

72
+

3z2

16

f5(z) =

(
πz10

18
+

5πz8

12
+

11πz6

12
+

17πz4

24
+

7π
64

+
17πz2

32

)
erf(z)2 +

11
180

(
3 + 12z2 + 4z4

)

f6(z) =
1

720
(−44 + 15π)

π3/2

((
10z + 4z3

)
e−z2

+ f6a

)

f6a = 4erf (z)
√
π

(
3
4

+ 3z2 + z4
)

4 Results and Discussion

In this section, we test the validity of the analytic so-
lution at the initial stages of a moderate Re flow and
at the fully developed stage of a high Re flow.
The test is carried out by comparing the results of the
analytic solution with those of a high-resolution nu-
merical solution obtained using a spectral finite dif-
ference scheme [12]. In this numerical approach,
the flow variables as well as the temperature func-
tion are approximated in terms of truncated Fourier
series expansion of N terms in the angular direction.
The resulting 6N+3 two dimensional partial differen-
tial equations in time and in the radial variable are then
integrated using a finite difference procedure.

In order to gain insight into the patterns of the heat
transfer rate, we compute the local Nusselt number
and the average Nusselt number variations with re-
spect to time and radial component. The local Nus-
selt numberNu and average Nusselt numberNu are
respectively defined as:

Nu(θ, t) = − 2
λ2

(
∂Φ
∂z

)

z=0
(49)

Nu(t) =
1
2π

∫ 2π

0
Nu(θ, t)dθ. (50)

Using the analytic approximation of the temperature
functionΦ and taking the derivative with respect toz
and then finding its value atz = 0 yields:

Nu(θ, t) =
4

λ
√
π

+ 1 + λN1(θ) + Raλ3 sin(θ)N2(θ)

(51)
where

N1(θ) = −8

(
51
√
π + (8 − 3π)ReA′

0(θ)
96π

+ C

)

N2(θ) = − 2√
π

(
1

15360
+

1
720

(
−44π + 15π2

)

π2

)

Similarly, the average Nusselt number is given by:

Nu(t) =
4

λ
√
π

+1− λ

2π

(
17
2
√
π + 16πC

)
+O(λ3).

(52)

We begin with Figure 1 where the time evolution of
the numerically simulated and the analytically deter-
mined local Nusselt’s number are depicted for Ri=10,
Re=1000,K = 0.2, Ω = 0.25 andt =0.01, 0.05, and
0.5. As we can see from the figures, there is excel-
lent agreement between the analytic approximations
and the numerical simulations for all times presented.
Note that, since Re is moderately large, the analytic
solution is in good agreement even att = 0.5 This
is because our expansion is valid in this limit as well.
Similar results are obtained for Re=50 as depicted in
Figure 3. However, we notice that the analytic accu-
racy is not as high in Figure 2 fort = 0.5. In this
case, the analytic solution is not valid except for small
time t since Re is also small. The surface vorticity
distribution which is given by

ζ(0, θ, t) =
1
λ
A0(θ)

+

(
K +A1(θ) −

√
π

4
A0(θ)

)
λA3(θ)−

Racos (θ)
8Re

√
π
λ

(53)
is depicted in Figures 3 and 4 for Ri=10,K = 0.2,
Ω = 0.25, t =0.01, 0.05, 0.5 for Re values of 50 and
1000 respectively. Again we notice that the analytic
solution becomes less accurate as time increases and
as Re decreases.
The integrated average Nusselt numbers are also com-
pared in Figure 5 forK = 0.2, Ω = 0.25, Ri=10 and
Re values of 50 and 1000. We see that there is ex-
cellent agreement between the two solutions for small
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values oft. However, ast increases the two solutions
tend to deviate from each other as expected. Note also
that the effect of the increase in Re is to enhance the
heat transfer.
Finally, the dependency on the shear parameterK is
demonstrated in Figure 6 for Re=1000, Ri=10 and
Ω = 0.0. We note that the vorticity distribution be-
comes less symmetric with increasing shear. The fig-
ure also shows that shear enhances the surface vortic-
ity in the upper half of the cylinder where there are
faster moving fluid particles with the maximum oc-
curring at the top tip of the cylinder. Again the ana-
lytic approximations are in excellent agreement with
the numerically predicted solutions. This is consis-
tent with the findings in [10] for the forced convection
case.

5 Conclusion

In this paper analytic approximations to the thermal-
fluid problem involving mixed convective heat trans-
fer from a rotating isothermal cylinder placed in a
non-uniform stream shear flow are presented. A con-
venient coordinate system is first introduced in order
to simplify the geometry of the problem. The flow
variables are then scaled with respect to the bound-
ary layer parameterλ resulting in a set of bound-
ary layer equations subject to appropriate initial and
boundary conditions. The analytic approximations for
the boundary value problem are obtained via a Fourier
series expansion in terms of the boundary layer vari-
able. The resulting approximations are valid not only
for small time but also for moderate and large times
provided that the Reynolds number of the flow is suf-
ficiently large.
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Figure 1, Re=1000, Ri=10, K=0.2,Ω=0.25,
t=0.01,0.05,0.5
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Figure 2, Re=50, Ri=10, K=0.2,Ω=0.25,
t=0.01,0.05,0.5
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Figure 3, Re=50, Ri=10, K=0.2,Ω=0.25, t=0.01,0.05
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Figure 4, Re=1000, Ri=10, K=0.2,Ω=0.25,
t=0.01,0.05
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Figure 5, Re=50,1000 Ri=5, K=0.2,Ω=0.25, t=0.01
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Figure 6, Re=1000, Ri=10, K=0,0.2,Ω=0, t=0.01
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