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Abstract: In this paper the flow generated by a vortex in the presence of an elliptical cylinder is considered. By
relating the coefficients of some of the terms in the asymptotic expansion of the stream function to the force
components and the torque on the combined system, together with the imposition of integral constraints, enable
the boundary element method to provide a closed system of equations. Our numerical results agree with all the
available analytical ones.
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1 Introduction
The solution of problems involving application of
point forces and torques are of considerable interest
in continuum mechanics. These solutions can be used
in the representation of solutions of more complicated
and physically realizable problems see Bedford[1]
and Kim[2].

There are many known solutions of problems of
the two-dimensional motion of an infinite viscous
fluid disturbed by a moving solid body. Wilton[3] in-
corporates, in the case of the elliptic cylinder, infinite
vorticity and indeterminate velocities at the ends of
the axes.

Swain[4], first treats the problem as a limiting
case of the motion of an ellipsoid through infinite vis-
cous fluid. His solution fulfills all the boundary con-
ditions, including the velocity zero at infinity. This
gives, in the limiting case of the elliptic cylinder, a
solution which involves the velocity being logarithmi-
cally infinite in the direction of the flow.

Subject to this condition, the solution appears to
be unique. It has been obtained as a definite value for
the resistance and then treated the circular cylinder as
a limiting case of the elliptic cylinder.

The problem of creeping flow past elliptical cylin-
der in the presence of a vortex has been solved analyt-
ically in El Bashir[5], where a vortex of strength Γ is
placed at a distance C from a cylinder whose bound-
ary is ξ = α. Here

C = a cosh(γ), γ > α. (1)

The transformation from cartesian to elliptical coordi-

nates is defined by

x = a cosh(ξ) cos(η), (2)

y = a sinh(ξ) sin(η), (3)

and the dimensionless variables x′, y′, c and β

x′ = x/a, y′ = y/a, c = C/a, β = Γa/C, (4)

are introduced.
For convenience the “ ′ ” will be removed and the

position of the vortex at (c, 0) and the major and mi-
nor axes of the ellipse are fixed at 5/4 and 3/4, re-
spectively (see Fig. 1).

Fig. 1: The geometry of the elliptical cylinder and the
position of the vortex.

Following this approach we need to solve the bi-
harmonic equation

∇4ψ = 0, (5)
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for the stream function ψ(ξ, η), where ξ ≥ α and

∇2 =
1
h2

(
∂2

∂ξ2
+

∂2

∂η2

)
. (6)

Here

h = (cosh2(ξ) sin2(η) + sinh2(ξ) cos2(η))1/2, (7)

and (ξ, η) are elliptic coordinates.

Before embarking on a numerical solution of this
problem, it is important to discuss the analytical so-
lution obtained by El Bashir[5]. It is found that the
Fourier series representation for the vortex term

ψ0 =
1
2

ln((x− c)2 + y2), (8)

is given by

ψ0 = −
∞∑

n=1

e−nγ

n
(e−nξ + enξ) cos(η)

+ (ξ0 − ln(2)) for ξ < ξ0.

(9)

Then put the complete solution as ψ = ψ0 +ψ1 where
ψ1 is the analytic function outside the ellipse. Using
the general solution of ∇4ψ = 0 as φ0 + (x2 + y2)φ1

where φ0 and φ1 are harmonic functions, we can write

ψ1 =
1
2
C0 + d0r

2+
∞∑

n=1

(Cne
−nξ + 2dn(sinh 2ξ + e−nξ cos 2η) cos nη).

(10)

The solution of ∇4ψ = 0 can be found by adding
the general Fourier Series term cos(nη) and sin(nη)
to ψ0(ξ, η). This is the solution for the vortex in the
absence of the ellipse, by finding the coefficients in
(10) to satisfy the no-slip conditions, and by summing
the series, i.e.

ψ =
1
2

ln[(cosh(ξ) cos η − cosh(γ) cos φ)2

+ (sinh(ξ) sin η − sinh(γ) sin φ)2]

− 1
2

ln[(cosh(α) cos η − cosh(ξ + γ − α) cos φ)2

+ (sinh(α) sin η − sinh(ξ + γ − α) sin φ)2]

+ (ξ − α) + sinh(ξ − α) sin(η)Im[
sinh(ξ + δ − γ)

sinh(δ)(cosh(ξ + δ − 2γ) − cos(η))
]

+ sinh(ξ − α)Re[
cosh(ξ + α)e−δ

sinh(δ)cosh(2α)

− cosh(α) − cosh(ξ + δ − α)cos(η)
sinh(δ)(cosh(ξ + δ − 2γ) − cos(η))

],

(11)

where
δ = α− iφ, i =

√−1, Im and Re are the imag-
inary and real parts in (11), respectively. At large dis-
tances from the ellipse (11) can be written in the form

ψ � Ar2, (12)

where

A =
cos(2φ) − e−2γ

cosh(2α)[cosh(2γ) − cos(2φ)]
. (13)

Hence a solid body rotation is induced at large dis-
tances from the ellipse except at φ = cos−1(e−2γ)/2
which gives a uniform flow when a vortex at this point
is placed see Fig. 2. In fact, it is possible to obtain
uniform flow at large distances if the vortex is placed
at any one of four points due to the symmetry of the
problem.

To simplify the analytical solution in order to
compare it with the numerical solution we put it in
the form

Ψ = ψB + ψ∗, (14)

where

ψB = b1r cos(ϑ) + b2r sin(ϑ) + b3 + b4 sin(2ϑ)

+ b5 cos(2ϑ) + b6 ln(r) + b7r
2 + b8r ln(r) cos(ϑ)

+ b9r ln(r) sin(ϑ) + ln(r2 + c2 − 2rc cos(ϑ))

+ b10 cos(ϑ)/r + b11 sin(ϑ)/r + b12 cos(3ϑ)/r

+ b13 sin(3ϑ)/r,
(15)
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Fig. 2: The uniform flow obtained when a vor-
tex at the position (2.236,0.758). The streamlines
labeled 1, 2, 3, 4 and 5, correspond to Ψ =
−1.0, −0.5, 0.0, 0.5 and 1.0, respectively.

and ψB is the asymptotic expansion of ψ and ψ∗ is
the perturbation value about this expansion that tends
to zero as r → ∞. Then, if we use sufficiently large
r, say, r ≥ 30 and we use (11), we find the value of
ψ. By repeating this 13 times we can get 13 equations
with 13 unknowns bj , j = 1, 2, . . . , 13. By using the
required Gauss elimination method we find the values
of bj as

b1 = 0.500, b2 = 0.000, b3 = −1.092, b4 = 0.000,

b5 = 0.208, b6 = 0.000, b7 = 0.056, b8 = 0.000,

b9 = 0.000, b10 = −0.015, b11 = −2.585,

b12 = 0.105, b13 = −0.002.
(16)

Equation (11) can be transformed to the solution ob-
tained by Dorrepaal[6] by replacing the variables ξ+α
by ξ. The ellipse itself is given by ξ = 0 and by
making α → ∞, a → 0, so that acoshα → A,
asinhα → A, where A is the radius of the cylinder
see Swain[4].

2 Forces and Moment on the Ellipse
The components of the force (Fx, Fy) and the moment
M acting on a volume V of a fluid which is enclosed
within the surface S can be expressed as

Fx =
∫

S
(σξξ∂x/∂ξ − σξη∂y/∂ξ)dS/h, (17)

Fy =
∫

S
(σξξ∂y/∂ξ + σξη∂x/∂ξ)dS/h, (18)

M =
∫

S
[(σξξ∂x/∂ξ − σξη∂y/∂ξ)y

− (σξξ∂y/∂ξ + σξη∂x/∂ξ)x] dS/h,
(19)

where x and y are the elliptic co-ordinates defined in
(2) and (3), respectively, and

σξξ = −p+ 2μ(
∂Vξ

∂ξ
/h− Vη

∂(1/h)
∂η

), (20)

σξη = σηξ = μ(
∂

∂ξ

[
Vη

h

]
+

∂

∂η

[
Vξ

h

]
), (21)

h =
(
cosh2(ξ) sin2(η) + sinh2(ξ) cos2(η)

)1/2
,
(22)

Inserting these values of σξξ, σξη into expressions
(17), (18) and (19) and using the Stokes equations of
motion, we obtain, after simplification,

Fx =
∫

S

[
∂ω

∂n
sinhα sin η − ω coshα sin η/h

]
ds,

(23)

Fy = −
∫

S

[
∂ω

∂n
coshα cos η − ω sinhα cos η/h

]
ds,

(24)

M =
∫

S

[
∂ω

∂n

{
cosh2 α cos2 η + sinh2 α sin2 η

}
/2

+ω sinhα coshα/h] ds,
(25)

where the vorticity ω = ∇2ψ. The integrals, which
occur in equations (23), (24) and (25) are next evalu-
ated numerically using Simpson ,s rule.

3 The Governing Equations
For slow steady, two-dimensional flow of an incom-
pressible Newtonian fluid the Navier-Stokes and con-
tinuity equations reduce to

∇p = μ∇2u, (26)

∇ · u = 0, (27)

where the Reynolds number, ρ(Γ/C)a/μ, is assumed
to be very small. On introducing the stream func-
tion, ψ say, such that ∂ψ/∂x = −vy and ∂ψ/∂y =
vx, then ψ satisfies the biharmonic equation, see
Batchelor[7],

∇4ψ = 0. (28)

Upon introducing the vorticity, ω, equation (28) may
be written in the following form
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∇2ψ = ω, (29)

∇2ω = 0. (30)

In order to solve (29) and (30) in the domain Ω we
use the Boundary Element Method (BEM). For any
p = (x, y) ∈ Ω ∪ ∂Ω and q = (x0, y0) ∈ ∂Ω, let

f(p, q) = ln | p− q |, (31)

g(p, q) =| p− q |2 (ln | p− q | −1), (32)

where | p−q |= {(x−x0)2+(y−y0)2}1/2. Applying
Green’s second identity we obtain

η(p)ψ(p) =∫
∂Ω
ψ(q)f ′(p, q)dq −

∫
∂Ω
ψ′(q)f(p, q)dq

+
1
4

∫
∂Ω
ω(q)g′(p, q)dq − 1

4

∫
∂Ω
ω′(q)g(p, q)dq,

(33)

η(p)ω(p) =∫
∂Ω
ω(q)f ′(p, q)dq −

∫
∂Ω
ω′(q)f(p, q)dq.

(34)

The boundary is first calculated by using Runge Kutta
method and is found to be 6.386 which agrees with
Weast[8], then it is subdivided into N segments, ∂Ωj ,
by solving the differential equation

dη/ds = 1/h. (35)

The stream function, ψ, its derivative, ψ′, the vorticity,
ω, and its derivative, ω′, are approximated by piece-
wise constant functions. This results in the following
system of algebraic equations

N∑
j=1

Eijψj −Gijψ
′
j + Lijωj −Mijω

′
j = 0

N∑
j=1

Eijωj −Gijω
′
j = 0

i = 1, . . . , n,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
(36)

where Gij , Eij , Lij and Mij are given by

Gij =
∫

∂Ωj

f(pi, q)dq,

Eij =
∫

∂Ωj

f ′(pi, q)dq − η(pi)δij ,

Lij =
1
4

∫
∂Ωj

g′(pi, q)dq,

Mij =
1
4

∫
∂Ωj

g(pi, q)dq,

(37)

Equations (36) represents 2N equations in 4N un-
knowns. With the application of the appropriate con-
ditions the system of equations (36) can be solved and
then equations (33) and (34) are used to find the value
of the stream function, ψ, at any point within the so-
lution domain, Ω.

4 Numerical Solution
In the present work the fluid flow passing through an
elliptical cylinder in the presence of a vortex is inves-
tigated. In the mathematical model the fluid flow is
assumed to be two-dimensional, the ellipse has major
and minor axes of lengths a and b, respectively, and
the vortex is at a distance c from the center of the el-
lipse as shown in Fig. (1).

In order to solve numerically the Navier-Stokes
equations in an exterior region, it is very advantageous
to use the BEM because there is a simple fundamental
solution, which enables one to convert the equations
into integral equations. This involves only boundary
integrals. Further, these integral equations are appro-
priate when dealing with the infinite boundary condi-
tion, see for example Jaswon[9] and Brebbia[10].

Here we use the BEM with constant elements. It
is convenient to separate the stream function and the
vorticity into two parts, namely,

ψ = ψA + ψ∗, (38)

ω = ωA + ω∗, (39)

where

ψA = λ1r cos(ϑ) + λ2r sin(ϑ) + λ3 + λ4 sin(2ϑ)

+ λ5 cos(2ϑ) + λ6 ln(r) + λ7r
2 + λ8r ln(r) cos(ϑ)

+ λ9r ln(r) sin(ϑ) +
β

2
ln(r2 + c2 − 2rc cos(ϑ)),

(40)

ωA = −4λ4 sin(2ϑ)/r2 − 4λ5 cos(2ϑ)/r2 − 47λ

− 2λ8 cos(ϑ)/r − 2λ9 sin(ϑ)/r.
(41)

ψA and ωA are the asymptotic expansions of ψ and ω
as r → ∞, and ψ∗ and ω∗ are the perturbations values
about these expansions that tend to zero as r → ∞,

Considering the surface of the ellipse as the
streamline ψ = 0, then ψ∗ and ω∗ satisfies

∇2ψ∗ = ω∗, (42)

∇2ω∗ = 0, (43)
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with

ψ∗ = −ψA and ψ∗′ = −ψ′
A on the boundary. (44)

Equations (42) and (43) result in 2N equations, and
the number of unknowns is 2N + 9 which means that
we need another 9 conditions to close the system. The
extra unknowns λj , where j = 1, . . . , 9, will require
extra conditions:

Case (a)
Let us assume for the moment that the values of

the drag, lift and moment are all zeros. Using the ex-
pressions (23), (24) and (25) where we have replaced
ω by ωA + ω∗, the parts of the integrals involving ωA

were evaluated analytically producing linear expres-
sions in the unknowns λj . The other parts involving
ω∗ are expressed after numerical integrations using
Simpson ,s method as linear expressions in ω∗j and

ω∗′
j . The resulting expressions for the drag, lift and

moment can be written as

(N−1)/2∑
j=1

[(ω∗′
2j−1 + 4ω∗′

2j + ω∗′
2j+1) sinh(α) sin(ηj)

− (ω∗
2j−1 + 4ω∗

2j + ω∗
2j+1)

cosh(α) sin(ηj)/hj ](2π/3N) = 0,
(45)

(N−1)/2∑
j=1

[(ω∗′
2j−1 + 4ω∗′

2j + ω∗′
2j+1) cosh(α) cos(ηj)

− (ω∗
2j−1 + 4ω∗

2j + ω∗
2j+1)

sinh(α) cos(ηj)/hj ](2π/3N) = 0,
(46)

(N−1)/2∑
j=1

[(ω∗′
2j−1 + 4ω∗′

2j + ω∗′
2j+1)h

2
j/2

+ (ω∗
2j−1 + 4ω∗

2j + ω∗
2j+1)

sinh(α)coh(α)/hj ](2π/3N) = 0,

(47)

where

hj = (cosh2(α) sin2(ηj) + sinh2(α) cos2(ηj))1/2,
(48)

ω∗
1 = ω∗

N , (49)

ω∗′
1 = ω∗′

N , (50)

Equations (45), (46) and (47) gives three conditions
plus one extra condition arising from the fact that the
pressure distribution is single valued (51).

−
(N−1)/2∑

j=1

[(ω∗′
2j−1 + 4ω∗′

2j + ω∗′
2j+1)](2π/3N) = 0.

(51)
Hence, equations (42) and (43), together with (45),
(46), (47) and (51) result in (2N + 4) equations in
terms of the (2N + 9) unknowns. Therefore we need
five extra conditions to complete the system of equa-
tions.

In order to obtain the other equations, we make
use of the fact that η(p) vanishes outside the domain,
i.e when p is inside the elliptical cylinder, namely
p(ξIj, ηj), where ξIj < α for j = 1, 2, 3, 4, 5.

Case (b)
In this situation we use the asymptotic expansion

of ψ given in equation (40). Hence, equations (45),
(46) and (47) have to be replaced with

− 4πλ9 +
(N−1)/2∑

j=1

[(ω∗′
2j−1 + 4ω∗′

2j + ω∗′
2j+1)

sinh(α) sin(ηj) − (ω∗
2j−1 + 4ω∗

2j + ω∗
2j+1)

cosh(α) sin(ηj)/hj ](2π/3N) = 0,

(52)

4πλ8 −
(N−1)/2∑

j=1

[(ω∗′
2j−1 + 4ω∗′

2j + ω∗′
2j+1)

cosh(α) cos(ηj) − (ω∗
2j−1 + 4ω∗

2j + ω∗
2j+1)

sinh(α) cos(ηj)/hj ](2π/3N) = 0,

(53)

4πλ6 −
(N−1)/2∑

j=1

[(ω∗′
2j−1 + 4ω∗′

2j + ω∗′
2j+1)h

2
j/2

+ (ω∗
2j−1 + 4ω∗

2j + ω∗
2j+1)

sinh(α)coh(α)/hj ](2π/3N) = 0.

(54)

We proceed in the same way as described in case (a).
However in this situation we do not assume that the
forces and the moment are zero. This however gives
rise to certain computational difficulties, which we
will discuss in some detail in the results section. To
overcome these difficulties we developed case (c):

Case (c)
Here we used the same methodology adapted in

case (b) except that we have replaced the lift condition
(53) by one point inside the ellipse. This gave us six
points inside the ellipse, one integral condition (51)
together with the expressions for the drag (52) and for
the moment (54).
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5 Numerical Results

Numerical details for situations when the position of
the vortex at (2.236,0) is presented for three cases

Initially in case (a) the drag, the lift and the mo-
ment are all enforced to be zero. The values of
λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8 and λ9 which, ana-
lytically are 0.500, 0.000, -1.092, 0.000, 0.208, 0.000,
0.056, 0.000 and 0.000 see El Bashir[5] numerically
are 0.477, 0.000, -1.091, -0.024, 0.204, 0.000, 0.056,
0.032 and 0.006, respectively. The above inaccuracies
arising in the coefficients are overcome by using case
(c).

In case (b) the asymptotic expansion for the drag,
the lift and the moment at infinity are included. The
values of λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8 and λ9

are 0.477, 0.000, -1.091, -0.024, 0.204, 0.000, 0.056,
0.032 and 0.006, respectively which are also inaccu-
rate as in case (a).

In case (c) six points inside the elliptical cylin-
der were used beside the asymptotic expansion at
infinity of the drag and the moment and the in-
tegral condition. This case was chosen because
the lift appears to be inaccurate in case (b) and is
very sensitive to the discretization. The values of
λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8 and λ9 for N = 600
are 0.501, 0.000, -1.091, 0.001, 0.207, 0.000, 0.056,
0.000 and 0.000, respectively

Fig. 2 represents the non-dimensional stream-
line pattern. The streamline shows a uniform flow
at large distances from the elliptical cylinder when
a vortex is at (2.236, 0.758). The streamlines for
−1.0, −0.5, 0.0, 0.5 and 1.0 are presented. In fact,
it is possible to obtain uniform flow at large dis-
tances if the vortex is placed at any one of four points
(2.236, 0.758), (−2.236, 0.758), (2.236,−0.758)
and (−2.236,−0.758) due to the symmetry of the
problem.

Fig. 3 represents the non-dimensional streamline
pattern and the vorticity pattern. The streamlines are
symmetric about the x-axis and show a rotational flow
about the elliptical cylinder and form closed contours
around the cylinder and the vortex, together with a
stagnation point on the x-axis opposite to the position
of the vortex. However, due to the different values
of c the position of the stagnation points differ. The
streamlines for −0.65, 0.00 and 0.19 and the non-
dimensional vorticity for −0.07, 0.0, 0.22, 0.3 and
0.4 are presented in Fig. 3(b).

Fig. 4 represents the non-dimensional stream-
line pattern and the vorticity pattern. The stream-
lines are symmetric about the y-axis and show a ro-
tational flow about the elliptical cylinder and also
form closed contours around the cylinder and the vor-
tex, together with a stagnation point on the y-axis.

However, due to the different values of c the posi-
tions of the stagnation points differ. The streamlines
for −1.5, −0.75, 0.0, 0.75 and 1.5 and the non-
dimensional vorticity for −0.5, −0.4, 0.0 and 0.2 are
presented in Fig. 4(b).

Fig. 3: The numerically obtained streamlines and vor-
ticity pattern for c = 2.236 with N = 800. (a)
the streamlines labeled 1, 2 and 3 correspond to
ψ = −0.65, 0.00 and 0.19, respectively, (b) the vor-
ticity lines labeled 1, 2, 3, 4 and 5 correspond to
ω = −0.07, 0.0, 0.22, 0.3 and 0.4, respectively.

6 Conclusion

The relation of the coefficients of some of the terms in
the asymptotic expansion of the stream function to the
force components and the torque on a body, together
with the imposition of an integral constraint, enables
the BEM to provide a closed system of equations for
the flow generated by a vortex in the presence of an
elliptical cylinder. It is found that the numerical re-
sults are in reasonable agreement with those obtained
analytically.

It is also found that the determination of the lift
is very sensitive to the form of the discretization. In
order to overcome this problem we found it necessary
to used six points inside the elliptical cylinder, instead
of the expected five points, with the constraint on the
lift being omitted.
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Fig. 4: The numerically obtained streamlines and vor-
ticity pattern for c = 2.236 with N = 800. (a) the
streamlines labeled 1, 2, 3, 4 and 5 correspond to
ψ = −1.5, −0.75, 0.0, 0.75 and 0.5, respectively,
(b) the vorticity lines labeled 1, 2, 3 and 4 correspond
to ω = −0.5, −0.4, 0.0 and 0.2, respectively.
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