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Abstract: Numerical visualization of heat transport for convective heat transfer were studied by two-dimensional
heat function formulation within a trapezoidal cavity, differentially heated in the vertical direction, is presented.
Penalty finite element method is used to obtain the isotherm lines, streamlines and heatlines to perceive the under-
standing of heat and fluid flow. Numerical results are presented for Rayleigh numbers,Ra = 103, 106 and Prandtl
numbers,Pr = 0.7 and10. For low Rayleigh numberRa = 103 it is observed from the heatlines that the heat
is transported from the hot wall to the cold wall uniformly. ForRa = 106 the heat transfer is more intense at the
lower-left and upper-right walls of the cavity. Flow characteristics depends strongly on the Rayleigh number and
Prandtl number for various side wall inclination anglesϕ = 45◦, 30◦ and0◦. Maximum value of heatline provides
directly the value of the average Nusselt number. The secondary circulations were observed forRa = 106. Heat-
lines were observed to predict the energy transfer better than isothermal lines.
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1 Introduction

In recent years, an ever-increasing awareness in ther-
mally driven flows reflects that fluid motions and
transport processes generated or altered by buoyancy
force are of interest due to the practical applications in
many fields of science and technology. Consequently,
a significant amount of research is being carried out
in diverse areas of meteorology, geophysics, energy
storage, fire control, studies of air movement in at-
tics and greenhouses, solar distillers, growth of crys-
tals in liquids etc. The essential coupling of transport
properties of flow and thermal fields leads to an added
complexity in buoyancy driven flows [1]. The major-
ity of works dealing with convection in enclosures is
restricted to the cases of simple geometry e.g. rectan-
gular, square, cylindrical and spherical cavities. How-
ever, the configurations of actual containers occurring
in practice are often far from being simple.

Iyican and Bayazitoglu [2] investigated natural
convective flow and heat transfer within a trapezoidal
enclosure with parallel cylindrical top and bottom
walls at different temperatures and plane adiabatic
side walls. The flow features in trapezoidal enclo-
sures are predicted based on data for rectangular en-
closures. A critical Rayleigh number is presented de-
pending on the tilting angle, where unicellular convec-
tion is observed. Karyakin [3] reported two dimen-

sional laminar natural convection in enclosures of ar-
bitrary cross-section. This study reported on transient
natural convection in an isosceles trapezoidal cavity
inclined at angleφ to the vertical plane and a single
circulation region is found in the steady state case.
The heat transfer rate is found to increase with the
increasing angle inφ. Peric [4] studied natural con-
vection in trapezoidal cavities with a series of system-
atically refined grids from10 × 10 to 160 × 160 and
observed the convergence of results for grid indepen-
dent solutions. Kuyper and Hoogendoorn [5] inves-
tigated laminar natural convection flow in trapezoidal
enclosures to study the influence of the inclination an-
gle on the flow and also the dependence of the average
Nusselt number on the Rayleigh number. Thermoso-
lutal heat transfer within trapezoidal cavity heated at
the bottom and cooled at the inclined top part was in-
vestigated by Boussaid et al. [6]. The convective heat
transport equation was solved by Alternating Direc-
tion Implicit(ADI) method combined with a fourth-
order compact Hermitian method. Lee [7] studied
computational and experimental studies of convective
fluid motion within trapezoidal enclosure for differen-
tially heated side walls for aspect ratios of 3 and 6.

Kimura and Bejan [8] proposed heatlines visual-
ization of convective heat transfer through an exten-
sion of heat flux line concept to include the advection
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terms. The contemporary use of T = constant line is
not a proper way to visualize heat transfer in the field
of convection. Costa [9] gave a unified viewpoint in
both physical and numerical aspects on the treatment
of heatlines for visualizing two-dimensional transport
problem. It has been applied for natural convection
(Bello-Ochende [10], Aggarwal and Manhapra [11],
Qi-Hong Deng and Guang-Fa Tang [12],Fu-Yun Zhao
et al [13]), boundary layers (Morega and Bejan [14])
and flow in porous media (Morega and Bejan [15]).
However heatline visualization were not observed for
trapezoidal enclosures. So it is important to study the
energy flow using heatlines. The present study deals
with natural convection flows within trapezoidal en-
closures for differentially heated side walls. The con-
sistent penalty finite element method [16] has been
used to solve the nonlinear coupled partial differential
equations for flow and temperature fields.

2 Governing equations
Consider a trapezoidal cavity of lengthL and height
H with the left wall inclined at an angleϕ =
45◦, 30◦, 0◦ with Y axis. The velocity boundary con-
ditions are considered as no-slip on solid boundaries.
The fluid is considered as incompressible Newtonian
and the flow is laminar. For the treatment of the buoy-
ancy term in the momentum equation, Boussinesq ap-
proximation is employed to account for the variations
of density as a function of temperature, and to couple
in this way the temperature field to the flow field. The
governing equations after non-dimensionalisation for
steady natural convection flow using conservation of
mass, momentum and energy can be written as:

∂U

∂X
+
∂V

∂Y
= 0 (1)

U
∂U

∂X
+V

∂U

∂Y
= −

∂P

∂X
+Pr

(

∂2U

∂X2
+
∂2U

∂Y 2

)

, (2)

U
∂V

∂X
+V

∂V

∂Y
= −

∂P

∂Y
+Pr

(

∂2V

∂X2
+
∂2V

∂Y 2

)

+RaPr θ,

(3)

U
∂θ

∂X
+ V

∂θ

∂Y
=

∂2θ

∂X2
+
∂2θ

∂Y 2
, (4)

with the boundary conditions (see Fig. 1)

U = 0, V = 0,
∂θ

∂Y
= 0 on AB

U = 0, V = 0, θ = 0 on BC

U = 0, V = 0, θ = 1 on AD

U = 0, V = 0,
∂θ

∂Y
= 0 on CD (5)

Here X and Y are dimensionless coordinates
varying along horizontal and vertical directions, re-
spectively;U andV are, dimensionless velocity com-
ponents in theX- andY -directions, respectively;θ is
the dimensionless temperature;P is the dimension-
less pressure;Ra andPr are Rayleigh and Prandtl
numbers, respectively.

3 Solution Procedure
The momentum and energy balance equations Eqs.
(2-4) are solved using the Galerkin finite element
method. The continuity equation (Eq. 1) will be used
as a constraint due to mass conservation and this con-
straint may be used to obtain the pressure distribution
[16]. In order to solve Eqs. 2, 3 we use the penalty
finite element method where the pressureP is elim-
inated by a penalty parameterγ and the incompress-
ibility criteria given by Eq. 1 (see Reddy [16]) results
in

P = −γ

(

∂U

∂X
+
∂V

∂Y

)

. (6)

The continuity equation (Eq. 1) is automatically sat-
isfied for large values ofγ. Typical values ofγ that
yield consistent solutions are105 − 107 [16].

Using Eq. (6), the momentum balance equations
(Eqs. 2, 3) reduce to

U
∂U

∂X
+ V

∂U

∂Y
= γ

∂

∂X

(

∂U

∂X
+
∂V

∂Y

)

+Pr

(

∂2U

∂X2 +
∂2U

∂Y 2

)

, (7)

and

U
∂V

∂X
+ V

∂V

∂Y
= γ

∂

∂Y

(

∂U

∂X
+
∂V

∂Y

)

+Pr

(

∂2V

∂X2 +
∂2V

∂Y 2

)

+Ra Pr θ (8)

Expanding the velocity components(U, V ) and
temperature(θ) using basis set{Φk}

N
k=1 as,

U ≈

N
∑

k=1

Uk Φk(X,Y ) , V ≈

N
∑

k=1

Vk Φk(X,Y ) ,

and θ ≈

N
∑

k=1

θk Φk(X,Y ) , (9)

the Galerkin finite element method yields the follow-
ing nonlinear residual equations for Eqs. (7), (8) and
(4), respectively, at nodes of internal domain
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Ω:

R
(1)
i =
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∑
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∂Y

]

ΦidXdY

+ γ




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Ω

∂Φi

∂X

∂Φk

∂X
dXdY





+ γ




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Ω
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
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[

∂Φi

∂X

∂Φk

∂X
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(

N
∑

k=1

θkΦk

)

Φi dXdY (11)

and

R
(3)
i =

N
∑

k=1

θk

∫

Ω

[(

N
∑

k=1

UkΦk

)

∂Φk

∂X
+

(

N
∑

k=1

VkΦk

)

∂Φk

∂Y

]

Φi dXdY

+
N
∑

k=1

θk

∫

Ω

[

∂Φi

∂X

∂Φk

∂X
+
∂Φi

∂Y

∂Φk

∂Y

]

dXdY. (12)

The non-linear residual equations (Eqs. 10-12)
are solved using a Newton-Raphson procedure to de-
termine the coefficients of the expansions in Eq. (9).
At each iteration, the linear (3N × 3N) system;

J (an)
[

a
n − a

n+1
]

= R (an) , (13)

is solved wheren is the iterative index. The elements
of the Jacobian matrix,J(an) contain the derivatives
of the residual equations with respect to velocity com-
ponents(Uj)’s, (Vj)’s and the temperature (θj ’s) and
R(an) is the vector of residuals. The linear system for
each iteration is based on efficient node numbering of
the elements such that the jacobian forms a banded
matrix. The iterative process is terminated with the

convergence criterion

[

∑

(

R
(j)
i

)2
]0.5

≤ 10−5 using

two-norm of residual vectors.
We have used nine node bi-quadratic elements

with each element mapped using iso-parametric map-
ping [16] fromX−Y to a unit squareξ−η domain as
illustrated in Fig. 9. Subsequently, the domain inte-
grals in the residual equations are evaluated using nine
node bi-quadratic basis functions inξ − η domain as:

X =

9
∑

i=1

XiΦi(ξ, η) and Y =

9
∑

i=1

YiΦi(ξ, η) ,

(14)
whereΦi(ξ, η) are the local bi-quadratic basis func-
tions on theξ − η domain. The integrals in Eqs. (10)-
(12) can be evaluated inξ−η domain using following
relationships:

[

∂Φi
∂X
∂Φi
∂Y

]

= 1
J





∂Y
∂η

−∂Y
∂ξ

−∂X
∂η

∂X
∂ξ









∂Φi
∂ξ
∂Φi
∂η





and
dXdY = Jdξdη (15)

where

J =
∂(X,Y )

∂(ξ, η)
=

∣

∣

∣

∣

∣

∣

∂X
∂ξ

∂X
∂η

∂Y
∂ξ

∂Y
∂η

∣

∣

∣

∣

∣

∣

.

4 Evaluation of Heat function and
Stream function

4.1 Heat function
Energy equation in non-dimensional form can be writ-
ten as,

∂

∂X
(Uθ −

∂θ

∂X
) +

∂

∂X
(V θ −

∂θ

∂Y
) = 0

which gives

∂H

∂Y
= Uθ −

∂θ

∂X
(16)

−
∂H

∂X
= V θ −

∂θ

∂Y
(17)
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H = H(X,Y) is the heat function. Heat can be con-
sidered to flow along constant H lines, which, in anal-
ogy to streamlines, are called heatlines.

Differentiating Eq. (16) and (17) w.r.t Y and X
and adding gives

∂2H

∂X2
+
∂2H

∂Y 2
=

∂

∂Y
(Uθ) −

∂

∂X
(V θ) (18)

Expanding the heat function (H) using basis set
{Φk}

N
k=1 as,

H ≈

N
∑

k=1

Hk Φk(X,Y ) (19)

the Galerkin finite element method yields the follow-
ing residual equation for Eq. (18)

Rs
i =

N
∑

k=1

Hk

∫

Ω

[

∂Φi

∂X

∂Φk

∂X
+
∂Φi

∂Y

∂Φk

∂Y

]

dXdY

+

n
∑

k=1

n
∑

l=1

Ukθl

∫

Ω

(Φl

∂Φk

∂Y
+ Φk

∂Φl

∂Y
)ΦidXdY

−
n
∑

k=1

n
∑

l=1

Vkθl

∫

Ω

(Φl

∂Φk

∂X
+ Φk

∂Φl

∂X
)ΦidXdY (20)

The boundary conditions on H follow from the
definition of heat function, Eq.(16) and (17):

H =

s
∫

0

(cosϕ
∂θ

∂X
+ sinϕ

∂θ

∂Y
)ds1 on AD

H =

s
∫

0

(cosϕ
∂θ

∂X
− sinϕ

∂θ

∂Y
)ds2 on BC

H = 0 on AB and H = Nuh on CD (21)

whereds1 and ds2 are the small elemental lengths
along the left and right walls andϕ = 45◦, 30◦, 0◦.

4.2 Stream function
The fluid motion is displayed using the stream func-
tion ψ obtained from velocity componentsU andV .
The relationships between stream function,ψ (see
Batchelor [17]) and velocity components for two di-
mensional flows are

U =
∂ψ

∂Y
, V = −

∂ψ

∂X
, (22)

which yield a single equation

∂2ψ

∂X2 +
∂2ψ

∂Y 2 =
∂U

∂Y
−
∂V

∂X
. (23)

Using the above definition of the stream function, the
positive sign ofψ denotes anti-clockwise circulation
and the clockwise circulation is represented by the
negative sign ofψ. Expanding the stream function

(ψ) using the basis set{Φ} asψ =

N
∑

k=1

ψkΦk(X,Y )

and the relation forU , V from Eq. (9), the Galerkin
finite element method yield the following linear resid-
ual equations for Eq. (23).

Rs
i =

N
∑

k=1

ψk

∫

Ω

[

∂Φi

∂X

∂Φk

∂X
+
∂Φi

∂Y

∂Φk

∂Y

]

dXdY

+

n
∑

k=1

Uk

∫

Ω

Φi

∂Φk

∂Y
dXdY

−

n
∑

k=1

Vk

∫

Ω

Φi

∂Φk

∂X
dXdY (24)

The no-slip condition is valid at all boundaries as there
is no cross flow, henceψ = 0 is used as residual
equations at the nodes for the boundaries. The bi-
quadratic basis function is used to evaluate the inte-
grals in Eq. (24) andψ’s are obtained by solving the
N linear residual equations

5 Numerical tests

Numerically there are primarily two methods to solve
the incompressible fluid flow: (i) vorticity-based
method (ii) primitive variable method

The disadvantage of vorticity method is, the dif-
ficulty in specifying value of the vorticity which is
often the cause of trouble in getting a converged so-
lution. Therefore, primitive variable i.e, pressure ve-
locity method is applied broader and adopted in the
present study. In penalty finite element method the
incompressibility constraint and pressure are related
through the addition of a penalized parameter into
the Galerkin formulation. The computational domain
consists of 20× 20 bi-quadratic elements which cor-
respond to 41× 41 grid points inξ-η domain as seen
in Fig. 9. To ensure the convergence of the numerical
solution to the exact solution, the grid sizes have been
optimized and the results presented here are indepen-
dent of grid sizes.
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6 Results and discussion

Flow patterns were discussed for various side wall in-
clination anglesϕ = 45◦, 30◦, 0◦ for Pr = 0.7 and
10. In Fig. 2, forRa = 103, Pr = 0.7 the flow inten-
sity is very low and heat transfer occurs mainly due to
conduction. Streamlines are of clockwise unicellular
flow structure, with low values such asψmin = −1.1
indicating the weak convection. The heat transfer is
mainly dominated by conduction, isotherms exhibit
pseudo-conduction structure. It is observed from the
heatlines that the heat is transported from the hot wall
to the cold wall uniformly. The heat transfer is more
intense at the lower-left and upper-right walls of the
cavity. It is observed that isothermal lines are poorer
to visualize the heat transfer as seen in Fig. 3. The
maximum value of the heatline provides directly the
value of the average Nusselt number. The positive val-
ues of lines refer to the heat transfer from hot wall to
cold wall whereas negative value implies eddies. For
Ra = 106 the convection is strengthened, as indicated
by minimum value of streamlinesψmin = −20 which
gets broken into two secondary circulation. The effect
of convection is more pronounced in the isotherm pat-
terns also. Similarly, forϕ = 30◦, 0◦ the streamline
with ψ = −18,−16.5 develops more secondary cir-
culations (Figs. 3, 5, 7) indicating stronger convection
for ϕ = 45◦ compared toϕ = 30◦ and0◦ (square).
ForRa = 106 the heatlines crossing the hot wall are
more crowded near the bottom side than those near the
top side. This shows the non-uniform distribution of
the heat flux over the walls. ForPr = 0.7 the heatline
with H = −7 for ϕ = 45◦ circulate as a core (Fig. 3)
emphasizing the importance of conduction. This core
gets reduced in size and moved towards the hot wall
for ϕ = 30◦ (Fig. 5) and disappears forϕ = 0◦ (Fig.
7) because of increase in the convection.

When the Prandtl number is increased from 0.7 to
10 the streamlines strength increases due to increased
convection. ForPr = 0.7 the heatline withH = −7
for ϕ = 45◦, 30◦ becomes a stronger circulation, ex-
panded and moved towards the cold wall forPr = 10
(Figs. 3, 4, 5, 6). Forϕ = 0◦ (square) the ver-
tical heatline boundary layer thickness increases for
Pr = 10 compared toPr = 0.7 due to low thermal
conductivity (Figs. 7, 8).

7 Conclusion

In this paper, the method of using heat functions to vi-
sualize the heat transport for convective heat transfer
within trapezoidal enclosure has been analysed. The
following conclusions can be obtained:

• The functions defined based on dimensionless
variables are more general and straightforward
than that in dimensional form.

• Heatlines are the best way to visualize net flow
of heat energy than isothermal lines.

• Effect of side wall inclination angle of the trape-
zoidal cavity is more pronounced in the heat
transfer.

• Dependence of flow characteristics on Rayleigh
number and Prandtl number becomes prominent.
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Figure 1: Schematic diagram of the physical system.
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Figure 2: Temperature (left), stream function (right)
and heatlines (bottom) forRa = 103 andPr = 0.7
with ϕ = 45◦.
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Figure 3: Temperature (left), stream function (right)
and heatlines (bottom) forRa = 106 andPr = 0.7
with ϕ = 45◦.

0.9
0.8

0.7
0.6

0.5
0.4

0.3

0.2 0.1

−3
−11
−19

−23−23

−15
−7

7
3 −1

−5
−7

−5

−1
−3

1

Figure 4: Temperature (left), stream function (right)
and heatlines (bottom) forRa = 106 andPr = 10
with ϕ = 45◦.
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Figure 5: Temperature (left), stream function (right)
and heatlines (bottom) forRa = 106 andPr = 0.7
with ϕ = 30◦.
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Figure 6: Temperature (left), stream function (right)
and heatlines (bottom) forRa = 106 andPr = 10
with ϕ = 30◦.
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Figure 7: Temperature (left), stream function (right)
and heatlines (bottom) forRa = 106 andPr = 0.7
with ϕ = 0◦.
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Figure 8: Temperature (left), stream function (right)
and heatlines (bottom) forRa = 106 andPr = 10
with ϕ = 0◦.
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Figure 9: (a) The mapping of trapezoidal domain to
a square domain inξ-η coordinate system and (b) the
mapping of an individual element to a single element
in ξ-η coordinate system.
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