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Abstract: - In this paper  free  convection from a horizontal  isothermal elliptic tube placed in a 
micropolar fluid with its major axis  vertical is investigated. The governing equations are based on the 
conservation of mass, linear momentum, angular momentum and energy. The  full governing equations 
written in stream function-vorticity formulation are solved numerically using the Spectral method based 
on Fourier series expansion. Beside the classical controlling parameters (Rayleigh number, Prandtl 
number and ellipse axis ratio ) the effect of the material parameters of the micropolar fluid are also 
considered. These parameters are the vortex viscosity, micro-inertia density and spin gradient viscosity. 
In comparison with Newtonian fluids, the  study has shown that micropolar fluids display a clear 
reduction in heat transfer  rate. The study shows also that the effect of vortex viscosity is the most 
significant material parameter on heat transfer rate. 
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1  Introduction 
The theory of micropolar fluids has been proposed by 
Eringen [1]. In this theory the local effects arising 
from the microstructure and intrinsic motion of the 
fluid elements are taken into account. Such fluids can 
support surface and body couples which are not 
present in the theory of  Newtonian fluids. 
Micropolar fluids are believed to be successful in 
describing the behavior of heterogeneous  mixtures  
such as  ferro liquids, colloidal fluids, animal blood , 
most slurries and some liquids with polymer 
additives. Eringen [2] developed the theory of 
thermo-micropolar fluids by extending the theory of 
micropolar fluids. 
    Previous studies of convective heat transfer in 
micropolar fluids have focused mainly on relatively 
simple geometry such as flat plates and circular 
cylinders. Refs. [3-8] are only examples. Most of 
these studies were mainly based on the numerical 
solution of simplified (boundary layer) governing 
equations. There  were only a few attempts to 
investigate the case of natural convection from an 
elliptic cylinder placed in a micropolar fluid. Among 
these attempts were those made by Bhattacharyya 
and Pop [9] and  Mahfouz [10].  Bhattacharyya and 
Pop solved the boundary layer equations to 
investigate the  steady natural convection from an 
isothermal elliptic tube with its major axis either 
horizontal or vertical. They presented results for local 
Nusselt number along with velocity and temperature 
fields. While Mahfouz solved the full governing 
equation without boundary layer simplifications to 

investigate the transient natural convection from an 
isothermal elliptic tube with its major axis horizontal.  
    The main objective of this work is to study the 
effect of Rayliegh number and material parameters 
on natural convection from an isothermal elliptic 
tube placed in micropolar fluid with its major axis 
vertical. The buoyancy driven flow is assumed to be 
laminar and two dimensional. 
 
Nomenclature  
a length of semi-major axis 
Ar axis ratio (=b/a) 
b length of semi-minor axis 
c dimensionless focal distance (= 21 Ar− ) 
Fb buoyancy force 
Kv vortex viscosity 
j micro-inertia density 
Nu         local Nusselt number 
Nu       average Nusselt number 

yx ′′,  Cartesian coordinates 

Y*          distance along minor axis   (= 25.0b Ra
a

y −′
)  

Greek symbols 
α   thermal diffusivity   
β  coefficient of thermal expansion 
γ  spin gradient viscosity 

ξη   ,  elliptical coordinates  
µ  viscosity coefficient. 
ν  kinematics viscosity 
Subscripts 
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s,o at cylinder surface 
∞  at infinite distance from the surface 
 
2    Problem Formulation 
Fig. 1 shows the physical model and coordinates 
system, consisting of an isothermal horizontal elliptic 
tube of infinite length placed with its major axis 
vertical in a quiescent micropolar fluid at 
temperature T∞. The effect of temperature variation 
on fluid properties is considered negligible except for 
the buoyancy force term in the momentum equation ( 
Boussinesqu approximation) . The  conservation 
equations of mass, linear momentum , angular 
momentum and energy in terms of the vorticity, 
stream function, microrotation  and temperature read 
the following: 
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           Fig. 1. Physical model and coordinate system  
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τ  is the time, ρ is the density, ν  is the kinematic 
viscosity, k is the thermal conductivity and cv is the 
specific heat. Kv, j and  γ are the vortex viscosity, 
micro-inertia density and spin-gradient viscosity. 
ζ ′ is the vorticity, ψ′ is the stream function, T is the 
temperature and  ω  is the component of 

microrotation vector whose direction of rotation is in 
the x′-y′ plane. 0  =−= ′∞′ yx and  F)Tρgβ(TF  are 
the components of the buoyancy force , where β is 
the coefficient of thermal expansion of the fluid.   
    The boundary conditions are mainly the no-slip, 
impermeability and no-spin  conditions on the tube 
surface and the stagnant ambient conditions very far 
away from it.  
-on the tube surface 

0=
′
′

=′
x∂
ψ∂

ψ , 0=
′
′

y∂
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, sTT =   and 0=ω  .       (5a) 

-far  away from the tube surface 

 0   ,0 →
′
′

→
′
′

yx ∂
ψ∂

∂
ψ∂ , ∞= TT  and 0   →ω        (5b) 

Now it is more convenient to use the following 
dimensionless variables: 
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Using elliptic coordinates    , ηξ   such that  
)cos()cosh( ηξcx = , )sin()(sin ηξshcy = , Eqs. (1)-

(4)  can now be written  in terms of the above 
dimensionless variables as :   . 
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where )coscosh 222 ηξ(cD −=  is the Jacobian of 
transformation matrix, ναβ /)()a2( 3

∞−= TTgRa s is 
the Rayleigh number and αν /Pr =  is the Prandtl 
number. The boundary conditions Eq. (5) can now be 
expressed as: 

 -on the tube surface ( oξξ = ) ,   0  
==

∂ξ
∂ψ

ψ  ,      

0=
∂η
∂ψ

,   M = 0 and 1=φ                                  (10a) 
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and  very far away from the tube surface ( ∞→ξ ),     

0   ,0 →→
∂η
∂ψ

∂ξ
∂ψ , 0M   →   and  0→φ      (10b) 

where oξ defines the ellipse surface (= Artanh-1 ) 
The temperature of the stagnant fluid around the tube 
at times  t < 0 is  ∞T  ( )0=φ  which is the same as 
that of the tube surface.  At the start of computations 
( 0=t ) the tube surface assumes a sudden 
temperature increase from ∞T  to Ts ( 1=φ ), and from 
that moment the time development of both flow and 
thermal fields commences. 
 
3   Method of Solution 
      The method used for solving the governing 
equations (6)-(9) to obtain the time development of 
both velocity and temperature fields is based on 
approximating the stream function, vorticity, 
microrotation and temperature using Fourier series 
expansion. The approach is similar to that used by 
Badr and Dennis [11]. The stream function ψ ,  
vorticity ζ , microrotation Γ and temperature φ  are 
now approximated as  
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where  N is the number of terms in the Fourier series. 
The functions  fn,  gn, rn, Ho and Hn are Fourier 
coefficients and all are dependent on ξ and t.  The 
rest of the details of the method of solution is similar 
to that in Mahfouz [10] and Badr [11] and will not be 
repeated for the sake of brevity.   
 The  local Nusselt number is defined as  

/kah2=Nu                                                           (12) 
where  h is the local  heat transfer coefficient defined 
as 
               h= )/( ∞− TTq o& ,          

oξ∂∂ )sT/-k(=q n&  
q&  is the rate of heat transfer per unit area , Sn is the 
normal direction to the tube surface. From the above 
definitions the Nu can be expressed in terms of 
Fourier coefficients H0 and  Hn as 
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The average Nusselt number can be expressed as 
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where  P is the perimeter of the elliptic section. 
 

4   Results  and  Discussion 
   The  governing equations along with the boundary 
conditions were solved in order to get the details of 
both flow and thermal fields. The simulations were 
carried out only after validating the method of 
solution by comparing the present results for the case 
of Newtonian fluids )0( =∆  with the most relevant 
results in the literature. Some of these comparisons 
are given in Mahfouz [8,10].  

 
 
Fig 2 Steady patterns of streamlines (right) and 
isotherms  (left) 
      
    The main controlling parameters are Rayleigh 
number Ra, Prandtl number Pr, axis ratio Ar and the 
material parameters λ , ∆ and J. For the sake of 
brevity only the effect of  Ra, ∆  and  J are 
considered while Pr, λ  and Ar   are fixed at 7, 1, 0.5 
respectively. The Rayleigh number Ra, is considered 
in its moderate range up to 104

. The material 
parameter ∆ , which characterizes vortex  viscosity 
is considered in the range from 0 to 10 while the 
material parameter J, which characterizes micro-
inertia density, is considered in the range from 0.1 to 
10. These values for material parameters satisfy the 
thermodynamics restrictions given by Eringen [2].  
    The time development of both flow and thermal 
fields is more or less similar to that of Newtonian 
fluids.  That is immediately after the temperature of 
the tube surface is raised,  a temperature gradient is 
established within the fluid layer adjacent to the tube 
surface, causing predomination of conduction mode 
of heat transfer. At this early time stages the newborn 
buoyancy force causes the commencement of fluid 
motion. As the time goes, the buoyancy–induced 
motion intensifies with gradual transition to 
convection mode domination heat transfer. At late 

Proceedings of the 5th IASME/WSEAS Int. Conference on Heat Transfer, Thermal Engineering and Environment, Athens, Greece, August 25-27, 2007   207



times, the convection mode dominates and the flow 
and thermal fields in the vicinity of the tube surface  
gradually tend to be almost steady. The steadiness in 
the nearby flow and thermal fields at late time leads 
to steady rates of heat transfer. A typical example for 
such  flow and thermal fields at late time is shown in 
Fig. 2. The figure shows the flow field, in terms of 
streamlines,  and the thermal field, in terms of 
isotherms, for the case of Ra=1000, 1=λ , 1=∆ and  
J=1. Since these fields are symmetrical about the 
vertical axis, only one half of each field is 
considered. The figure shows that these distributions 
are generally similar to those for Newtonian fluids. 
 
Table 1 Effect of Ra and material parameters ∆ and J 
on steady state  average Nusselt number . 

 
Ar 

 
Ra 

 
   ∆  

       
     J 

 
Nu  

------ ------ 4.03 
1 0.1 3.66 
5 0.1 3.23 
10 0.1 2.98 
1 1 3.63 
5 1 3.11 
10 1 2.87 
1 10 3.65 
5 10 3.08 

 
 
 
 
 

103 

10 10 2.78 
----- ------ 6.55 

1 0.1 5.79 
5 0.1 4.93 
10 0.1 4.56 
1 1 5.77 
5 1 4.79 
10 1 4.38 
1 10 5.79 
5 10 4.81 

 
 
 
 
 
 
 
 
 
 

0.5  
 
 
 

104 

10 10 4.35 
       ------  refers to  a Newtonian fluid       
 
     Table 1 shows the effect of Rayleigh number Ra, 
and the material parameters ∆ and J of micropolar 
fluid on the steady state  average Nusselt number, 
Nu . It can be seen that the effect of Ra on steady 
state Nu  is quite clear, that is at any fixed value of 
fluid material parameters as Ra increases the Nu  
increases. This is expected since increasing of Ra  
leads to increasing of convection currents and so 
increasing the heat transfer rate. Also, it can be seen 
that as the material parameter ∆  increases at any 
fixed value of Ra  the Nu  decreases.  The table  also 
shows that at fixed values of Ra, and ∆  the material 

parameter J has almost negligible effects on  the Nu  
in the range considered for the  parameters. 
       Fig. 3 shows the time variation of averaged 
Nusselt number Nu , for  the case of  Ra=1000 , and 
at different values of dimensionless vortex viscosity 
∆ = 0, 1, 2, 5. The figure clearly shows that the 
general variation of Nu is similar to that for 
Newtonian fluids ( ∆ = 0). That is Nu  evolves in a 
sequence of pure conductive, transient convective 
and steady convective processes. The pure 
conductive process prevails immediately after the 
tube surface temperature is increased. The high 
temperature gradient established near the tube 
surface  results in high heat flux and so high values 
of Nu . In this early time stages and as a result of 
quick developing of thermal boundary layer a quick 
decrease in Nu occurs, reaching to a minimum value 
at a certain short time. Beyond  this time, the 
buoyancy force becomes more effective, causing 
transient  convective process. This  transition as 
shown in the figure takes a form of overshoot in Nu .  
At late times the convective process gradually 
prevails with steady rates of heat transfer and so 
steady Nu gradually approach.   
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Fig. 3 The time development of  Nu  

 
    The figure also shows that the steady heat transfer 
rates ( i.e steady Nu ) in the case of micropolar fluids 
( ∆ =1, 2, 5)   is lower than  that for Newtonian fluid 
( 0=∆ ). This decrease may be  attributed, as 
explained in Hsu  et al. [7], to the increase of the 
flow viscosity as a result of vortex viscosity.  
Increasing of flow viscosity weakens the flow 
convection currents and increases the thickness of the 
thermal boundary layer which in turn decreases  heat 
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transfer rates ( and so Nu ). Since the conduction 
mode of heat transfer is predominant in the initial 
stages the vortex viscosity has no effect and the heat 
transfer rates for micropolar fluid and that Newtonian 
fluid are identical. As the convection domination 
mode starts developing  the vortex viscosity of 
micropolar fluid enhances the flow viscosity and so 
decreases the heat transfer rate. The larger the value 
of ∆ the larger the flow viscosity and the lower the 
value of steady state Nu . 
     The steady state local Nusselt number 
distributions at Ra =1000  and at different values of 
dimensionless vortex viscosity are shown in Fig. 4. 
Since the thermal field is symmetrical about the 
vertical axis, only one-half of Nu distribution is 
shown.  It can be seen that at the topmost point on 
the tube surface ( 0=η ) the Nu is minimum for all 
values of ∆ though it is slightly smaller for bigger 
values of ∆ . As η  increases from topmost point 
toward the bottommost point, the Nu slightly 
increases up to almost point ( 30=η ),  and .keeps 
almost constant up to point ( 90=η ) then increases 
rapidly, reaching maximum at the bottommost point 
( 180=η ). The figure clearly shows that, at any 
surface point Nu decreases as ∆  increases. 
Decreasing of Nu on the tube surface as ∆ increases 
explains the decrease of steady state Nu  as  
∆ increases as shown in Table 1. and Fig. 3  
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Fig. 4  Steady state local Nusselt number distibution  
. 
      Fig. 5 shows the surface vorticity distribution for 
the same case.   The surface vorticity at any fixed 
value of ∆  increases rapidly from zero at topmost 
point ( 0=η ) to maximum at almost 30=η  then 
slightly decreases as η increases till almost 

120=η and then sharply decreases to zero at 

bottommost point. The figure also shows that as ∆  
increase the surface vorticity decreases at all points 
of the tube surface . Decreasing of surface vorticity 
reflects the decrease of velocity gradients at the tube 
surface which reflects in turn the weakness in the 
flow convection currents. The weaker the flow 
currents the smaller the  heat transfer rates.  
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Fig. 5 Steady state surface vorticity distibution 
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Fig. 6 Temperature variation along minor axis of the 
tube 
 
    Fig. 6 shows the temperature variation along the 
extension of the ellipse minor axis )270( =η for the 
case of Ra = 1000, J=1 and at different  values of 
dimensionless vortex viscosity, ∆ . It can be seen 
that the fluid temperature decays with distance from 
tube surface till it reaches eventually the stagnant 
fluid temperature (i.e  0=φ ). Also. the figure clearly 
shows that as ∆ increases the temperature gradient at 
the tube surface decreases and accordingly local heat 
transfer decreases which in turn means a decrease in 
Nu as can be seen in Fig.4.  
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     Fig. 7 shows the variation of both vorticity and 
microrotation along the minor axis of the  tube for 
the case of  Ra=1000,  J=1 and  ∆ =10. The  figure 
shows that the values of both vorticity and 
microrotation are significant in the nearby region of 
the tube ( in the boundary layer region ) and almost 
negligible elsewhere along the axis extension . It can 
also be inferred that the direction of rotation of both 
mean flow and fluid elements along the minor axis is 
the same. The mean flow rotation is represented by 
vorticity while fluid elements rotation is represented 
by the microrotation. Moreover, the point of zero 
vorticity and zero microrotation or the point at which 
the mean flow and fluid elements change direction of 
rotaion is the same for both of them. The 
consisitency of this result with the logical 
exepectation from one side supports the valdity of the 
micropolar fluid model developed by Eringin [1] and 
from the other side supports the validaty and 
accuracy of the present numerical technique. 
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Fig.7. The vorticity and microrotation variation along  
minor axis 
 
5  Conclusion 
    The effect of material parameters of micropolar 
fluid and Rayleigh number on natural heat 
convection from an isothermal elliptic tube and 
placed horizontally with its major axis vertical  in a 
micropolar fluid was investigated. The study 
considered a range for  Ra up to 104,  a range for 
material parameter, ∆  from 1 to 10 and a range for 
material parameter, J from 0.1 to 10. While the 
material parameter, λ  Prandtl number and axis ratio 
are  kept unchanged at 1, 7 and 0.5 respectively. The 
study showed that at certain values for material 
parameters as Rayleigh number increases the local 
heat transfer rate increases at all points on the 
cylinder surface which in turn increases the average 
heat transfer rate. The study has also shown that the 

vortex viscosity is the most important material 
parameter. A noticeable reduction in local and 
average heat transfer rates is observed as vortex 
viscosity increases. Generally,  the study showed that 
the convective heat transfer rate decreases in the  
micropolar fluids in comparison with the Newtonian 
fluids. 
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