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Abstract: - Given a prescribed volume of homogeneous insulation material, how should this be distributed 

around the surface of a body to minimize the rate of heat loss from the body? The answer is to apply the 

calculus of variations to minimize the functional representing the heat loss, while satisfying the heat 

conduction equation and the boundary conditions, including the radiation boundary condition on the free 

surface. The nonlinearity of this boundary condition requires novel treatment. The analytical solution for the 

heat loss from a spherical body is found by means of a regular perturbation procedure. 
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1   Introduction 
The problem of determining that shape of insulation 

of given mass which minimizes the rate of heat loss 

from the body it surrounds has been addressed by 

the author in previous work [1-3], but never for the 

case of a radiation boundary condition on the outer 

surface of the insulation. Yet this case is of prime 

importance in some applications where minimizing 

heat loss is critical, such as occur in, for example, 

the insulation of spacecraft. 

     We do not review the directly applicable 

previous work in detail here, as this has already been 

done in [1-3] and the interested reader is referred to 

this work. Related recent work on optimisation in 

problems of heat transfer has been undertaken. In 

particular Meric and Kul [4] have applied an adjoint 

problem in a manner that has considerable 

similarities to that applied in this paper. Razealos 

[5], and Aziz and Kraus [6] have investigated the 

optimization of cooling fins. The reader requiring an 

introduction to heat conduction can do no better than 

consult the classic text by Carslaw and Jaeger [7]. 

     In fact the approach applied here is analogous to 

that used in [1], in that the calculus of variations is 

similarly applied, but there is the important 

difference, that the nonlinear radiation boundary 

condition that is fourth-order in the temperature 

must be addressed. We have adopted the same 

notation as in [1] to assist the reader. 

     As in [1] a field variable that is adjoint to the 

temperature is introduced by formulating a 

functional defined on the unknown outer boundary 

based upon the radiation boundary condition. 

Manipulation of this functional enables the 

derivation of the first-order variation in the rate of 

heat loss in an expression that excludes variations in 

the derivative of the first-order variation of the 

temperature, thereby allowing an explicit necessary 

condition for a minimum to be established. 

     Having thus obtained the optimal boundary value 

problem, we proceed to solve it approximately for 

the case where the body is a sphere, where the 

thickness of the insulation is small compared with 

the radius of the sphere. We apply a regular 

perturbation method akin to that deployed in [3], 

solving to the lowest order, and obtain an explicit 

analytical solution. 

 

 

2   Problem Formulation 
We define a boundary-value problem representing 

the heat flow across the layer of insulation D  

surrounding a body B . Let ix   denote Cartesian co-

ordinates in D  and let ( )ixθ  be the temperature 

field within D . This satisfies the classical heat 

conduction equation for a homogeneous material, 

namely Laplace’s equation,  

 

.02 Din=∇ θ    (1) 

 

     Let the inner and outer surfaces of D  be 1S  and 

2S  respectively. We suppose that on the inner 

surface, the surface of the body B , a Dirichlet 

condition applies. The temperature field is a 

prescribed function of position, so that  
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( ) ,, 111 SonrqΘ=θ   (2) 

 

where 11 , rq  are curvilinear co-ordinates specifying 

a point on 1S . We suppose that this function is 

differentiable in both the co-ordinates. On the outer 

surface it is assumed that a radiation boundary 

condition applies, namely 

 

( ) ,044 =−+∇⋅ An θθβθ   (3) 

 

where Aθ  is the ambient temperature in the region 

outside the insulation layer, and β  is a constant 
given by 

 

µσβ = ,    (4) 

 

where µ  is the gray body emissivity and σ  is 

Stefan’s Constant. 

     The Dirichlet condition is believed to be 

appropriate for the body surface, in that usually the 

heated domain is kept at constant temperature, but 

this condition might be changed to either a Robin 

condition applying Newton’s Law of Cooling in 

linearised form, or another radiation boundary 

condition, if desired. It is expected that the 

treatments of [1] and that of here could be extended 

to address such more complex scenarios. 

 

 

3   Statement of Optimization Problem 
We seek a necessary condition for minimal rate of 

heat loss from the body B . This is accomplished by 

variation of the outer surface 2S  of the insulation 

layer, subject to the isoperimetric constraint  

 

.,0 constVdV
D

==∫    (5) 

 

and to the boundary-value problem (1-3). Let us 

denote the optimal solution for the temperature field, 

outer surface of the insulation, and optimal 

insulation domain by the addition of a subscript ‘0’ 

in each case, so that the optimal solution is 

0200 ,, DSθ , respectively. 

     Consider a weak variation about the optimal 

solution as follows: 

 

( ) ,010 DDino ∪++= εεθθθ  (6) 

 

( ) ( ) ( ) ( ) ( ),,,, 2202222

2

0

)2( εε orqnrqfrqxx iii ++=
(7) 

 

on 20S , where 10 <<< ε , and it is assumed that θ  

and 0θ  may be analytically continued into 0DD∪ , 

while each satisfies the boundary-value problem (1-

3) in its own domain. Equation (7) describes a 

variation of the surface 2S  about the optimal 

surface 20S . The variables 22 , rq  are curvilinear co-

ordinates on 20S  such that 
( ) ( )22

2

0 , rqxx ii =  are 

Cartesian co-ordinates of a point P on 20S . The co-

ordinates 
( )2
ix  are the Cartesian co-ordinates of the 

point on 2S  corresponding to that point P, which is 

on the normal to 20S  at P. The function f  and the 

normal components in0  are assumed to be 

differentiable functions of 22 , rq . 

     In terms of f  the isoperimetric constraint (5) is  

 

∫ =
20

.0
S

dSf    (8) 

 

     For any solution D,θ  given by the variations (6) 

and (7), the rate of heat loss Q  is given by the 

functional [ ]DI ;θ , where 

 

[ ] ∫ ∇⋅==
1

.,
S

dSnDIQ θκθ   (9) 

 

Substitution of the variations (6) and (7) into (9), 

and defining  

 

[ ] [ ]00 ,, DIDII θθ −=∆ ,  (10) 

 

the result  

 

( )εθεκ odSnI
S

+∇⋅=∆ ∫
1

1   (11) 

 

follows immediately. 

     If 20S  exists and satisfies the above smoothness 

conditions, the coefficient of ε  in equation (11) is 
to vanish for all variations (6) and (7) satisfying 

condition (8). It remains to manipulate the right-

hand side of equation (11) by variational analysis to 

obtain this necessary condition in terms of 0θ  and 

20S . 
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4   Variational Analysis 
Let φ  be any twice differentiable function in D  and 

form an integral functional over 2S  given by 

 

[ ] ( ){ } .0,

2

44 =−+∇⋅= ∫ dSnM
S

Aθθβθφθφ  

 (12) 

 

Here φ  is akin to a Lagrange multiplier for the 
boundary condition (3) viewed as a constraint. Use 

of the Divergence Theorem enables the first term of 

(12) to be rewritten as two integrals over the domain  

D , and the surface 2S . Thus 

 

( )
( ) .

0

2

1

44

2

∫

∫∫
−+

∇⋅−∇⋅∇+∇=

S
A

SD

dS

dSndV

θθβφ

θφθφθφ
(13) 

 

     It is now convenient to impose the equation 

 

Din02 =∇ φ ,  (14) 

 

and the condition 

 

,1 1Son=φ    (15) 

 

which enable the elimination of certain variations 

below. Then equation (13) reduces to  

 

( ) .
21

44 dSdVdSn
S

A
DS ∫∫∫ −+∇⋅∇=∇⋅ θθφβθφθ

(16) 

 

     Application of the variations (6) and (7) now 

gives  
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∫∫∫

(17) 

 

     Some straightforward manipulations involving 

the Divergence Theorem and using (14) and (15) 

and the governing boundary-value problem yield the 

relations 

 

,
1200

000 ∫∫∫ ∇⋅+∇⋅=∇⋅∇
SSD

dSndSndV θθφθφ

(18) 

 

and 

 

.
200

11 dSndV
SD

φθθφ ∇⋅=∇⋅∇ ∫∫  (19) 

 

Up to first order in ε  the right-hand side of equation 
(17) comprises a zero-th order term and a first-order 

term. The zero-th order term reduces to 

 

( )[ ] ,0
20

44

00 =−+∇⋅∫ dSn
S

Aθθβθφ  (20) 

 

vanishing because of condition (3) for the optimal 

solution. Thus we are left only with the first-order 

term, so that  
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5   Optimality Conditions 
We have now derived an expression for the integral 

in (11) and since this is to vanish for all variations 

(6), (7) satisfying (8), it follows that the conditions 

 

,04 3

0 =+∇⋅ φθβφn   (22) 

 

and 

 

( ) ,4 0

0

03

0

44

0

0

0 λ
θ

θφθθ
φ

βθφ =








∂

∂
+−

∂
∂

+∇⋅∇
nn

A  

(23) 

 

hold, where 0λ  is a constant. Use of (3) and (22) 

simplifies this optimality condition to 

 

( ) .8 0

44

0

3

0

2

0 λθθφθβθφ =−−∇⋅∇ A  (24) 

 

Note the marked nonlinearity of conditions (22) and 

(24) in contrast with the corresponding conditions in 

[1]. 
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     To sum up, the coupled optimal boundary value 

problem in φθ ,0  to be solved comprises (1)-(3), 

(14), (15), (22), and (24). We explore simple 

spherical problems in the next section. 

 

 

6   Spherical Problem 
Consider a spherical body B  of radius a . If a 
spherical optimal solution exists then the optimal 

surface is a sphere of radius b , with  
 

( ) .0

33

3

4
Vab =−π .  (25) 

 

     Let us state the boundary-value problem. 

Equation (1) is 

 

.0
1 02

2
=








dr

d
r

dr

d

r

θ
  (26) 

 

The boundary condition (2) for a constant 

temperature 1α  on 1S  is  

 

aron == ,10 αθ .  (27) 

 

The radiation boundary condition (3) becomes 

 

( ) .044

0
0 bron

dr

d
A ==−+ θθβ

θ
 (28) 

 

Similarly equation (14) is 

 

.0
1 2

2
=








dr

d
r

dr

d

r

φ
  (29) 

 

Condition (15) is 

 

.1 aron ==φ   (30) 

 

Condition (22) becomes 

 

.04 3

0 bron
dr

d
==+ φθβ

φ
 (31) 

 

Finally, the optimality condition is  

 

( ) .8 0

44

0

3

0

20 bron
dr

d

dr

d
A ==−− λθθφθβ

θφ

 (32) 

The solutions of equations (26) and (29) are: 

 

,,0 D
r

C
B

r

A
+−=+−= φθ  (33) 

 

where DCBA ,,,  are constants to be determined by 

the boundary conditions. 

     Conditions (27) and (28) yield 

 

B
b

A
+−=1α ,   (34) 

 

and 

 

.04

4

2
=













−






 +−+ AB
b

A

b

A
θβ  (35) 

 

     Conditions (30) and (31) yield 

 

,1=+− D
a

C
   (36) 

 

and 

 

.04

3

2
=







 +−






 +−+ D
b

C
B

b

A

b

C
β  (37) 

 

The final optimality condition (32) becomes  

 

.

8

0

4

4

3

2

4

λθ

β

=
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


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−




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



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





 +−−

AB
b

A

D
b

C
B

b

A

b

AC

(38) 

 

Equations (25), (34)-(38) thus constitute six 

equations to be solved simultaneously for the six 

unknowns 0,,,,, λDCBAb . The nonlinearity of 

the equations requires their solution to be 

undertaken numerically in most cases. 

     The rate of heat loss from the body is given by 

equation (9) as 

 

.44 20 Aa
dr

d
Q κππ

θ
κ −=⋅−=   (39) 

 

We will seek an analytical perturbation solution for 

the case of a thin insulation layer. 
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7.   Perturbation Solution for Sphere 
To demonstrate that solutions of (25), (34)-(38) may 

be found, consider the case where the volume 0V  is 

small and the insulation layer is thin, as may be 

represented by the relation 

 

( ),1 kab ϖ+=    (40) 

 

where 10 <<<ϖ . A regular perturbation solution 

may be sought by writing: 

 
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ).
,

,

,

,

10

10
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10

10
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ϖϖ

o
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++=

++=

++=

++=

++=

  (41) 

 

The zero-th order solution is readily shown to be: 

 
( ) ( )
( ) ( )
( )

( )
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,41
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The corresponding zero-th order rate of heat loss is 

thus from (39) simply 

 

( )44

1

24 AaQ θαβκπ −= ,  (43) 

 

which is, of course, the correct result for zero 

thickness of insulation. The perturbation method 

could readily be extended to higher orders. 

 

 

8.   Discussion 
In this paper we have shown that the radiation 

boundary condition (3) has greatly increased the 

complexity of the optimization problem to be solved 

over the corresponding linear problem with the 

Robin boundary condition, as described in [1]. For a 

general body, where numerical solution will 

probably be needed, it may even be prudent to 

undertake some preliminary optimization using the 

simpler Robin condition, before refining the solution 

with the exact radiation boundary condition. 

     In fact we believe that this paper brings to a 

watershed the series of papers [1]-[3] written over 

the last twenty-five years approximately. The papers 

have undertaken the exploration by analytical means 

of the problem of minimizing the rate of heat loss of 

a body by arranging the distribution of a given mass 

or equivalently volume, of thermal insulation. The 

analysis thus far has been applicable to bodies of 

smooth shapes and has not addressed discrete layers 

of insulation, but has allowed only smooth and 

continuous variation of the insulation shape. The 

work so far is thus open to the criticism that, while 

of interest academically, it is not yet widely 

applicable to many real problems. 

     However, we believe that we have clearly shown 

that shape optimization can yield benefits in 

reducing heat loss and that the problems we have 

solved are well-posed mathematically. This 

encourages us to consider the application of 

numerical methods to these problems for bodies 

with more awkward geometry, e.g. having edges, 

such as cuboids, or smooth corners where the radius 

of curvature is comparable to the thickness of 

insulation. 

     We believe, too, that considering the related and 

perhaps more realistic problem where one has a 

finite quantity of insulation, typically in a roll, and 

wishes to know how to deploy it in discretely  

varying numbers of layers over a surface, such as a 

loft floor, over which the temperature varies, may be 

of interest. 

     Another open area for optimisation work possibly 

involving shape variation is that of thermal cycling. 

This is an important problem in extreme 

environments such as in space, where energy is 

expended to maintain the interior of a spacecraft at a 

constant temperature – necessary because fuel 

would freeze, or electronics malfunction etc. Here 

the radiation boundary condition is especially 

relevant. 

     We see the next step as confirming some of our 

results thus far with the aid of a suitable heat 

conduction model. At present we expect to explore 

the use of finite element methods to this end, but we 

have interest too in the boundary element method. 

     The analytical models can clearly serve as very 

useful verification data for codes that seek to 

determine the unknown optimal boundary. Indeed, 

further analytical work may continue to be useful. 

For example, such tools as asymptotic analysis may 

allow us to obtain good approximate solutions for 

some of the more difficult geometrical situations. 

That would be invaluable in offering more 

demanding verification examples. 
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