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Abstract: Axisymmetric vortices with high level of axial vorticity are considered. Consistency conditions result in
so-called compensating regime of the vortical flow. The power laws associated with this regime are applied to a
series of vortices of different scales: bathtub vortex, tornadoes and tropical cyclones.
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1 Introduction
This work considers features that are common for
bathtub-type vortical flows. These flows are character-
ized by a converging motion which can dramatically
amplify the rotation present in the flow. Even if the
initial intensity of rotation is so small that it remains
virtually undetected (like, for example, the Earth rota-
tion), the amplification may result in formation of the
vortex near the axis of the flow with visible and even
intense rotation. In order to achieve significant ampli-
fication of rotational components of velocity, the fluid
particles have to reduce their distance from the axis
by a very large factor. This relatively simple general
scheme of formation of the vortex is valid for phenom-
ena of very different scales: starting from the vortex
in a bathtub and finishing with tornados and cyclones
[1]. The region, where the amplification of rotation
takes place, can be referred to as the intensification re-
gion. Although different vortices represent distinctly
different phenomena, some degree of similarity can be
expected in the intensification region which is charac-
terized by prime importance of convective evolution
of the vorticity.

Simple observations of the bathtub vortices in-
dicate that vortical flows are axisymmetric, inviscid,
mostly laminar and nearly steady. These features
of vortical flows should be interpreted with caution
since, for axisymmetric steady and inviscid flows, the
directions of vorticity and velocity must coincide. In
the present, work we identify a regime that is based
on consistent level of tangential vorticity production
and compensates for possible variations of surround-
ing conditions. This regime, which is termed here
as ”compensating”, can under certain conditions be
approximated by power laws. Applicability of these

power laws to the vortices of different scales is one of
the issues discussed in the present work.

2 Equations governing axisymmetric
vortical flows

The normalized system of equations governing ax-
isymmetric incompressible flows with vorticity can be
written in the form
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and the dimensionless parameters — the Reynolds
number, the Strouhal number, the rotation vorticity
number and the geometrical parameter — are intro-
duced as
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ν
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(7)
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The viscous terms are shown by dots in (1)-(3). The
cylindrical coordinates z, r, θ, the velocities vz, vr,
vθ the vorticity ωz, ωr, ωθ, the stream function ψ and
the circulation γ = vθr are normalized according to
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The characteristic values and parameters based on
these values are indicated by asterisk. The other con-
ventional parameters — the swirl ratio, the Ekman
number and the Rossby number — are linked to K∗,
Re∗ and St∗ by the equations
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The rotational vorticity parameter K∗ =
(S∗/Ro∗)1/2 represents a geometrical average of the
swirl ratio and the inverse Rossby number. The pa-
rameter K∗ determines the rate of generation of tan-
gential vorticity Ωθ by equation (2). If K∗ is small
and rotation in a bathtub-type flow remains relatively
weak, then its complete description is easy: the flow
on the planes passing through the axis must be close
to potential (the term potential is used here to indicate
that Ωθ ≈ 0). We, of course, are interested in a rel-
atively fast rotation in the flow, whose description is
far from being trivial. The case of largeK∗ and strong
rotation in the flow, which we call the strong vortex
approximation, was considered in Refs. [2, 3, 4]. The
analysis originated in Refs. [5, 6, 7] shows that the
situation is more complicated and the strong vortex
approximation should be applied with caution.

3 The compensating regime
It is reasonable to assume that the stream function can
be represented in the intensification region by a power
law Ψ = C0R

αZ with exponent α unknown a pri-
ori. This assumption is consistent with the overall ex-
pected structure of a bathtub-like flow, with the strong
vortex approximation (for any α) and with the low-
K∗ case (potential flow with α = 2 or α = 0). The
dimensional equations for the stream function ψ, ve-
locity components vz and vr, tangential vorticity ωθ

and convergence λ are given by

ψ = c0r
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α−2z,
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(10)
The dimensionless form of these equations represents
the leading order terms of the strong vortex approxi-
mation [6, 7]. The dimensional form used here is more
convenient for our purposes. The values of α from the
range 1 < α ≤ 2 correspond to a bathtub-like flow
where we expect that vz � 0 as r → 0 and vr → 0
as r → 0. If viscous effects are neglected, the quasi-
steady solutions for ωz = Ωzω∗ and ωr = Ωrω∗L∗
can be obtained by applying the operators ∂/∂r and
∂/∂z to the second equation in (3):

ωr = 0, ωz =
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, γ = γ0(t) + γ1 (11)

where
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}

c0 and c1 are constant while γ is determined by inte-
grating ωz using equation (6). It is possible to demon-
strate that, if α �= 2 in an inviscid flow, any ini-
tial distribution of the axial vorticity approaches to
ωz ∼ r−α in the velocity field given by (10). We
note that even if the axial vorticity dependence on r is
given by a power law, the tangential velocity
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r
=
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r
+
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, c2 =
c1
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(12)

is represented by a power law vθ ∼ 1/rβ only when
one of the terms γ0 or γ1 dominates the other (note
that α �= 2 in (12)).

Vortical flows usually have a sufficiently wide
range of radii to create conditions for substantial am-
plification of axial vorticity. Since different radii r∗
can be characterized by different characteristic val-
ues of the parameter K∗, we introduce the local value
K defined in terms of local parameters by K =
(γωz)1/2/vz . In principle, K may exhibit a strong
dependence on r as specified by the equation

K2 ≡ γωz

v2
z

= K2
∗
ΓΩz

V 2
z

∼ γ

r3α−4
(13)

One can expect that K should not become very large
or very small in a developed bathtub-like flow. Indeed,
if K → ∞ as r → 0, then no sufficient amount of the
tangential vorticity can be generated near the axis and
the flow must become potential (ωθ ≈ 0) there. This
leads us to a contradiction since the potential flow cor-
responds to α = 2 and, if α = 2, K must increase
towards the axis according to (13). If, on the contrary,
K → ∞ as r → 0, then, on one hand, equation (13)
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requires sufficiently large α while, on the other hand,
the large magnitudes of tangential vorticity ωθ gen-
erated by (2) would, according to (10), decrease α.
Hence, we conclude that, in a developed vortical flow,
parameter K should have the same order at different
radii r. The condition K ∼ 1 applied to (13) results
in a power law when

α∗ =
{

4/3, γ0 � γ1

3/2, γ0 	 γ1

}
(14)

In this equation, α∗ denotes the value of α that ensures
that K ∼ 1. The exponent α = α∗ is defined to com-
pensate for possible increases or decreases of K and
we call this regime ”the compensating regime” while
the value α∗ is referred to as the compensating expo-
nent. The constants 4/3 and 3/2 represent two lim-
iting values for the compensating exponent but, prac-
tically, when γ0 and γ1 have similar magnitudes, α∗
can vary between the limiting values.

In general, K is likely to be small during the
initial stage of the vortex formation since rotation
is weak in this stage. This flow remains potential
(ωθ ≈ 0) and this problem is, effectively, linear: evo-
lution of the vorticity is determined by the velocity
field but the vorticity ωθ is not strong enough to af-
fect the translational components of the velocity vz
and vr. Linear behavior can also be observed at the fi-
nal stages of the vortex existence when axial vorticity
becomes exhausted around the vortex but the vortex
still persists for some time due to the axial vorticity
accumulated in the viscous core (note that K = 0
when ωz = 0 even if γ > 0). Here, we see a devel-
oped vortex as a non-linear phenomenon where evo-
lution of vorticity does significantly affect the trans-
lational velocity components. The translational ve-
locities in a linear vortex are fully controlled by the
boundary conditions and the vortex can be easily de-
stroyed by flow disturbances while the nonlinear vor-
tex has a self-organizing structure that makes it more
stable. Since α = 2 in the linear vortex the conver-
gence λ remains uniform while in a non-linear vortex
α < 2 and λ increases towards the axis.

The arguments that K can not be small in a de-
veloped vortex are offset by the arguments that K can
not be very large. If K → ∞ as r → 0, the analysis
of Ref. [6] demonstrates existence near the axis of a
non-trivial disturbance that complies with the bound-
ary condition and this indicates that the vortical flow
is likely to bifurcate and loose stability. This situation
can not be dismissed as totally unrealistic but it is not
consistent with the concept of a stable and persistent
vortex. Hence, we can use K ∼ 1 as the first approxi-
mation and the power laws (14) are obtained from this
estimation. On one hand, large values K correspond

to the strong vortex approximation but nonlinear inter-
actions of vorticity and velocity trigger a mechanism
that prevents further K increases. It is probably easier
to conclude that K ∼ 1 than to explain the physi-
cal balancing mechanism that prevents very large and
very small values of K. This mechanism is based on
existence of a negative feedback between the value
of exponent α and parameter K: decrease in K re-
duces ωθ that increases α that increases K (and vise
versa). In general, non-linear interactions of velocity
and vorticity are known to be responsible for insta-
bilities and turbulence but, in case of a bathtub-like
vortices, these interactions appear to have some sta-
bilizing effect. The physical mechanism behind this
effect is considered in Refs. [5, 7].

4 Formation of the vortex
During the initial period of vortex formation, the axial
vorticity level is, generally, low and K is uniformly
small; hence this vortex can be treated as linear and
α = 2 in the vortex. As rotation is amplified K also
increases. As soon as K ∼ 1 is achieved in a certain
region, the vortex becomes non-linear and changes
structure to noticeable levels of ωθ in this region. Ac-
cording to equation (2), this requires presence of the
radial vorticity ωr. A discussed in the following sec-
tion, the mechanism of generating ωr of ”correct” sign
may be different for different vortices but it is a fact
that ωθ, which amplifies λ towards the axis and stabi-
lizes the updraft motion, is present in vortical flows.
We expect in the non-linear region that α drops below
2 and the compensating regime prevents any further
significant increase of K in this region. We distin-
guish two cases when initial distribution of the axial
vorticity is 1)quasi-steady ωz ∼ 1/r2 and 2) uniform
ωz ∼ const. In the first case, K ∼ 1 is achieved first
near the axis and the compensating regime then ex-
tends sidewise [7]. In the second case, which seems to
be more relevant to formation of atmospheric vortices,
K ∼ 1 is achieved at the periphery and the compen-
sating regime propagates towards the axis. The ring of
compensating regime screens, to some extent, the in-
ner disk from atmospheric disturbances allowing for
the vortex formation. Although α = 2 and the vortex
is still linear within the disk, rotation there amplifies
and the inner boundary of the compensating regime
propagates towards the axis.

When the strong vortex is formed the value of γ0
will continue to rise if no losses are encountered in the
flow and, eventually, this vortex would loose its stabil-
ity when K becomes excessively high. Practically, a
positive value of γ0 amplifies the losses due to very
fast rotation near the axis. It seems that γ0 remains
small compared to γ1 in many realistic vortices.
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Figure 1: Dependence of axial vorticity on radius for different vortices: a) bathtub vortex [8], b) hurricanes Hilda
(x) and Inez (o) [15, 16], c) tornado 4 of McLean storm [10] and d) typical characteristics of large supercell
tornados [9, 10, 12]. In all figures, the dashed lines show three exponents of α = 2, 3/2 and 4/3 in ωz ∼ 1/rα.
The references point to sources of data used in evaluation of the curves.

5 Intensification region in different
vortical flows

The intensification region is primarily characterized
by amplification of rotation due to convective evolu-
tion of vorticity. This region does not have a char-
acteristic radius on its own and, in real vortices, is
bounded by a viscous core at the axis and by outer
scales of the flow at the periphery of the vortex. The
core is normally controlled by viscosity (molecular or
turbulent) and, may be, buoyancy although, in some
vortices, viscous core is replaced by a aircore. Detect-
ing power laws within the intensification region re-
quires a good separation of the inner and outer scales
(which is not always the case in real vortices) and,
for this purpose, one needs to select the strongest and
most stable vortices. It should be also noted that, if ax-
ial vorticity is exhausted in surrounding flow, the vor-
tex stream function can revert to ψ ∼ r2z. As consid-
ered in (12), if the axial vorticity is given by the power

law ωz ∼ 1/rα, this does not necessarily mean that
the tangential velocity is also represented by a power
law vθ ∼ 1/rβ Hence, comparison of the power laws
of the compensating regime with measurements using
axial vorticity is more direct than that using tangential
velocity.

5.1 Bathtub vortex
In a bathtub vortex, the inner boundary of the inten-
sification region is determined by the size of the air-
core while the outer scales are typically linked to the
geometry of the tub. Even under conditions of poten-
tial flow, the drain located at the center of the flow cre-
ates conditions for generating ωr of ”correct” sign [7].
Shiraishi and Sato [8] measured experimental profiles
of vθ = γ/r for vortical flow in a bathtub. The re-
ported curves vθ(r) do not have a significant depen-
dence on z and are sufficiently smooth to allow for
numerical differentiation by polynomial approxima-

Proceedings of the 5th IASME / WSEAS International Conference on Fluid Mechanics and Aerodynamics, Athens, Greece, August 25-27, 2007      17



tions of the curves. The axial vorticity profiles are pre-
sented in Fig. 1a. The profile for the case of the small-
est drain hole (20mm) and the weakest rotation in the
flow appears to be less regular (the overall slope of the
curve in this case seems to be closer to α = 2) while
the near axis asymptotes of ωz(r) for other cases (the
drains of 30, 40, and 50 mm) indicate α varying be-
tween 3/2 and 4/3. The exponent of α = 4/3 was also
observed in numerical simulations of a bathtub-like
flow [7].

5.2 Tornadoes
The strongest and most stable tornadoes with intense
rotation usually appear as a part of supercell thunder-
storms. The maximal rotational speeds are achieved
in the core of the tornado and then vθ decreases with
radius. Turbulent viscosity is deemed to be a deter-
mining factor in the core that makes distribution of
axial vorticity more uniform. At its largest scales, the
tornado is embedded into a mesocyclone whose char-
acteristic scale is 10-40km [1]. At the scales of sev-
eral kilometers, the air flow is affected by both the
tornado and the core of the parent mesocyclone. The
flow in mesocyclones involves more irregular compo-
nents. Interactions of atmospheric flows with the earth
surface result in atmospheric boundary layers. The in-
teractions are most intense near the surface but extend
to higher AGLs (levels above the ground) of several
kilometers high. The boundary layer introduces ωr

into the flow (the Ekman effect).
We focus our attention on the intensification re-

gion which is intermediate between the core and
mesocyclone scales. This region extends from the
radius of few hundred meters to the radius of few
kilometers with characteristic AGL of several hundred
meters. According to Brooks et. al. [9], a supercell
tornado amplifies the axial vorticity from ∼ 0.01s−1

in the area with a span of 3-7km to the level of ∼ 1s−1

in the core of the tornado. Dowell and Bluestein [10]
summarized research on tornadoes available in other
publication by stating that a tornado-producing storm
amplifies the axial vorticity from ∼ 0.01s−1 in the
region of a scale of ∼ 5km to the level of ∼ 1s−1

in the core region with a scale of ∼ 100m. On the
basis of these data and other observations [12] we se-
lect the radii of 1.5-3.5km (the scale of 3-7km) for the
outer tornadic vorticity of ωz = 0.01s−1 in the core
of the parent mesocyclone and the radii of 50-100m
(the scale of 100-200m) for the tornadic core vorticity
of ωz = 1s−1. Figure 1d demonstrates that the power
laws of α = 4/3 and α = 3/2 do not contradict the
commonly accepted characteristics of supercell torna-
does. Wurman and Gill [11] presented high resolution
measurements of a F4 tornado formed in a supercell

storm near Dimmitt (Texas) in 1995 and reported a
tangential velocity profile that can be approximated
by vθ ∼ 1/rβ with β = 0.6 ± 0.1 that corresponds to
α = β + 1 = 1.6 ± 0.1. The value of α∗ = 3/2 is
within this range.

Dowell and Bluestein [10] reported characteris-
tics of several tornadoes that appeared in the 1995
McLean (Texas) storm based on Doppler radar mea-
surements. Among these tornadoes, tornado 4, which
reached F4-F5 on the Fujita scale, was the strongest,
largest and most stable tornado with a relatively uni-
form distribution of the axial vorticity with height
(which is consistent with the strong vortex approx-
imation). The results are plotted in Fig. 1c. The
curve has been determined from the contour plot of
the constant values of vorticity by calculating the av-
erage effective radius of each contour line. The ex-
ponents of the compensating regime produce a good
match to the measured vorticity within the range of
400m < r < 1.5km.

5.3 Hurricanes
Tropical cyclones (hurricanes and typhoons) are the
largest and most stable vortices observed in the Earth
atmosphere [14, 13]. Compared to tornadoes, the flow
pattern in tropical cyclones is more stable and the cy-
clones can persist for many days. Typically, stronger
tropical cyclones, which affect weather on a large ter-
ritory, are more symmetric and, thus, more interest-
ing for us. The outer diameter of a strong cyclone
can reach 500-1000km [13]. The core region of the
cyclone is represented by the eye surrounded by the
eye wall and has a characteristic radius of around
20-40km. This region has a noticeably higher tem-
perature and is strongly affected by buoyancy while
the temperature increments in surrounding flow are
much smaller. The maximal wind speeds are achieved
within the outer rim of the core. The intensification
region, which still has significant winds and updrafts,
extends from the radius of 20-40km to the radius of
130-250km. The region located outside the intensi-
fication region — the peripheral region — covers a
large area with the radius of 500-1000km that is still
subject to noticeable influence of the cyclone. The pe-
ripheral region can be approximately treated as a two-
dimensional vortical sink without any significant up-
draft motion and the estimates of β = 1 are common
for this region. Although β = 0.5 (corresponding to
α = β+1 = 3/2) is considered to be the best average
approximation in the intensification region [14, 13],
particular measurements of the wind profiles in cy-
clones can have some scattering around this value. As
in case of tornadoes, the Ekman effect is likely to be
responsible for generation of ωr in cyclones.
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Detailed measurements of axial vorticity were re-
ported for category 4 hurricanes Hilda (1964) and
Inez (1966) [15, 16]. As expected, the temperature
anomalies measured in these hurricanes were rela-
tively small in what we call the intensification region
but became much more significant in the eye. The pro-
files of angular momentum (i.e. circulation) and axial
vorticity reported for Inez and Hilda (and also many
other cyclones) appear to be independent of z up to the
altitudes of at least two kilometers. The dependence
of ωz on r in hurricanes Hilda and Inez is shown in
Fig. 1b. The values shown are taken from lower al-
titudes where ωz does not depend on z. The slope
of the curves ωz ∼ 1/rα exhibits some variations
but is generally consistent with the lines of α = 3/2
and α = 4/3. At the radius of r ∼ 20km, the Inez
curve enters the eye wall and its slope becomes much
steeper than in the intensification region r > 20km.
This behavior can be explained by intensive genera-
tion of ωθ by the substantial radial temperature gradi-
ents and by influence of turbulent transport which is
expected to be more intensive in the core region.

6 Concluding remarks
The intensification region is an intermediate region
that is limited by the core and peripheral scales and
characterized by primarily convective amplification of
axial vorticity. Existence of the intensification re-
gion is common for vortices of different nature (bath-
tub vortex, tornadoes, tropical cyclones). In the in-
tensification region, the nonlinear interactions of ve-
locity and vorticity have some stabilizing and self-
organizing effect on the flow leading to the compen-
sating regime: the developed vortical flow is con-
strained by balancing the tangential vorticity gener-
ation so that the rotational vorticity parameter K is
neither very large nor very small. The compensating
regime corresponds to an essentially vortical flow (i.e.
ωθ �= 0) with α < 2 and the flow convergence λ in-
creasing towards the axis. Although the compensating
regime does not enforce exact power laws, the char-
acteristic exponents of the compensating regime are
α = 3/2 and α = 4/3. These exponents are consis-
tent with measurements performed in several vortices
of very different scales.

References:

[1] Fujita, T.T. Tornadoes and downbursts in the
context of generalized planetary scales, J. At-
mos. Sci. 38, 1511–1534, 1981.

[2] Einstein, H.A. and Li, H. Steady vortex flow in
a real fluid, Proc. Heat Trans. and Fluid Mech.
Inst. 4, 33–42, 1951.

[3] Lewellen, W.S. A solution for three-dimensional
vortex flows with strong circulation, J.Fluid
Mech. 14, 420–432, 1962.

[4] Lundgren, T.S. The vortical flow above the
drain-hole in a rotating vessel, J.Fluid Mech.
155, 381–412, 1985.

[5] Klimenko, A.Y. A small disturbance in the
strong vortex flow, Physics of Fluids 13, 1815–
1818, 2001.

[6] Klimenko, A.Y. Near-axis asimptote of the
bathtub-type inviscid vortical flows, Mech. Res.
Comm. 28, 207–212, 2001.

[7] Klimenko, A.Y. Moderately strong vorticity in
a bathtub-type flow, Theoretical and Computa-
tional Fluid Mechanics 14, 143–257, 2001.

[8] Shiraishi, M. and Sato, T. Switching phenom-
enon of a bathtub vortex, J. Appl. Mech. 61, 850–
854, 1994.

[9] Brooks, H.E., Doswell, C.A. and Davies-Jones,
R. Environmental helocity and the maintenance
and evolution of low-level mesocyclones, Tor-
nado: its structure, dynamics, prediction and
hazards. Geophysical Monograph 79, Amer.
Geophys. Union, pp. 97–104, 1993.

[10] Dowell, D.C. and Bluestein, H.B. The 8 june
1995 McLean, Texas, storm., Month. Weath.
Rev. 130, 2626–2670, 2002.

[11] Wurman, J. and Gill, S. Finescale radar obser-
vations of the Dimmitt, Texas (2 June 1995)
tornado, Month. Weath. Rev. 128, 2135–2164,
2000.

[12] Bluestein, H.B. and Golden, J.H. Review of
tornado observations, Tornado: its structure,
dynamics, prediction and hazards. Geophysi-
cal Monograph 79, Amer. Geophys. Union,
pp. 319–352, 1993.

[13] Emanuel, K. Tropical cyclones, Annu. Rev.
Earth Planet. Sci. 31, 75–104, 2003.

[14] Gray, W.M. Feasibility of beneficial hurri-
cane modification by carbon dust seeding, At-
mospheric Science Paper No 196 Dept. of Atm.
Sci. Colorado St. Univ., 1973.

[15] Hawkins, H.F. and Rubsam, D.T. Hurricane
Hilda, 1964, Month. Weath. Rev. 96, 617–636,
1968.

[16] Hawkins, H.F. and Imbembo, S.M. The structure
of small intense hurricane – Inez 1966, Month.
Weath. Rev. 104, 418–422, 1973.

Proceedings of the 5th IASME / WSEAS International Conference on Fluid Mechanics and Aerodynamics, Athens, Greece, August 25-27, 2007      19


