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Abstract: The growing computational power of modern graphics processing units is making them very suitable

for general purpose computing. These commodity processors operate generally as parallel SIMD platforms and,

among other factors, the effectiveness of the codes is subject to a right exploitation of the underlying memory

hierarchy. This paper deals with the implementation of the Fast Fourier Transform on a novel graphics architecture

offered recently by NVIDIA. Such an implementation takes into consideration memory reference locality issues,

that are crucial when pursuing a high degree of parallelism, that is, a good occupancy of the processing elements.

The proposed implementation has been tested and compared to the manufacturer’s own implementation.
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1 Introduction

The Fast Fourier Transform (FFT) constitutes nowa-

days a cornerstone for many algorithms and applica-

tions in the context of signal processing. Basically the

FFT follows a divide and conquer strategy in order to

reduce the computational complexity of the discrete

Fourier transform (DFT), which provides a discrete

frequency-domain representation X[k] from a discrete

time-domain signal x[n]. For a 1-dimensional signal

of N samples, DFT is defined by the following pair of

transformations (forward and inverse):

X = DFT (x) : X[k] =
N−1∑

n=0

x[n]Wnk
N , 0≤k<N

x=IDFT (X) : x[n]=
1

N

N−1∑

k=0

X[k]W−kn
N , 0≤n<N

where the powers of WN = e−j 2π
N are the so-called

twiddle factors.

The FFT organizes the DFT computations as

shown in Fig. 1, in terms of basic blocks, known

as butterflies. The computation is carried out along

log2 N stages being computed N coefficients per

stage. This way, the computational complexity is re-

duced to O(N log2(N)) instead of O(N ×N) as in-

ferred directly from the DFT definition.

Several configurational issues have been preset in

Fig. 1. This configuration is known as radix two be-

cause butterflies operate on two inputs generating two

transformed coefficients. Also input coefficients are

permuted in bit reversal order before the first stage
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Figure 1: Radix-2 decimation-in time FFT in terms of

butterfly operators.

with the purpose of obtaining the right output ar-

rangement. Such a rearrangement in time domain

gives rise to the denomination decimation-in-time al-

gorithm. This configuration is used the rest of the pa-

per.

From the viewpoint of memory reference local-

ity, we can observe that if the input coefficients are

located into consecutive memory positions, the refer-

ence patterns of higher stages will exhibit poorer lo-

cality features than the lower ones. In addition, we

must remark that if the input coefficients are permuted

properly, it is possible to carry out one of the stages

using the access pattern of another, simply by using

the corresponding twiddle factors. Such an equiva-

lence is depicted in Fig. 2 showing how 5th and 6th

stages can be performed with the access pattern of the

3rd and 4th ones, after permuting the coefficients.

For subsequent use, we will denote L(N,j,i)(x)
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Figure 2: Computing 3rd and 4th stages of the FFT (a); computing 5th and 6th stages of the FFT using the pattern

of 3rd and 4th stages over a properly permuted input (b).

as the computation of j-th stage of a N -sample

signal, but using the access pattern of the i-th
stage (excluding the permutation) and L(N,i)(x) =
L(N,i,i)(x) the computation of the i-th stage with

the proper pattern and twiddle factors. This way

we can write the full FFT computation as X =
FFT (x) = L(N,s−1)(...(L(N,1)(L(N,0)(P (x))))...),
assuming that the number of samples is N = 2s, and

P represents the bit reversal permutation of the signal.

2 Related work

The FFT represents a floating-point computation-

ally intensive algorithm whose generalized applica-

tion makes it adequate for being accelerated on graph-

ics platforms. Due to its interest, several contribu-

tions can be found in the literature of the last years

focused on porting FFT algorithms to graphics pro-

cessing units. In [8] very basic ideas of how to im-

plement the FFT algorithm are collected. In [6], im-

plementations of the FFT in the context of image pro-

cessing applications are presented using a shadower

model. Also in other specific contexts FFT has been

developed on graphics hardware, like [9, 1, 4]. A dis-

cussion about the FFT implementation, together with

other algorithms, is found in [3]. This work tries to ex-

ploit the GPU memory hierarchy in order to improve

the performance of the implementations.

3 The GPU programming model

A GPU (Graphic Processor Unit) is a device special-

ized in algorithms such as graphics rendering involv-

ing very intensive and highly parallel computations.

These devices are nowadays implemented as a set

of multiprocessors with a Single Instruction Multiple

Data (SIMD) architecture. Due to their high compu-

tational power, these GPUs are used both for graphics

and general purpose processing. In this scope, they

operate as a coprocessor, or hardware accelerator, to

the main CPU, or host.

NVIDIAr has recently presented its Compute

Unified Device Architecture (CUDATM), as a both

hardware and software architecture for issuing and

managing computations on the GPU as a truly generic

data-parallel computing device with a very high level

of parallelism. An extension to the C programming

language is provided in order to develop source codes.

CUDA programming model is based on a hi-

erarchy of abstraction layers: grids, blocks, warps

and threads. All threads in a block behave as an

SIMD, whereas different blocks of a grid are sched-

uled among the set of multiprocessors by the API

runtime in a transparent way. Programmers spec-
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Figure 3: Data transfer pattern between device and

shared memory of copy in/copy out operations.

ify the number and shape (1D, 2D or 3D) of some

of such levels, without the additional charge of cod-

ing strategies to balance the workload among the ac-

tual hardware configuration. However, some limita-

tions exist, among others: the maximum number of

threads in a block is 512, a block of threads is executed

in one multiprocessor (manufacturer recommends the

use of a large number of blocks), memory accesses

for all threads in a warp must be coalesced, and only

threads in a block can be synchronized at the device

side, while the synchronization of different blocks of

threads must be explicitly done by the host.

According to this model, an application running

on the host invokes a unique kernel code that will be

executed for each thread at the device side, but oper-

ating over different data sets.

4 FFT implementation

In this section we analyze an FFT implementation

using the programming model previously described.

The goal is to obtain a high degree of parallelism tak-

ing into account system constrains, specifically those

related to the memory hierarchy. The basic idea con-

sists of mapping coefficients placed in global (device)

memory into the data parallel cache (shared memory),

performing all possible computations with these local

data and then copying the updated coefficients back

to the global memory. This process may be repeated

with different mapping functions until all stages are

done.

In order to be more precise we firstly introduce

some useful functions describing the FFT implemen-

tations under study. These functions represent data

transfers and transformations accomplished in a sin-

gle shared memory.

Function copy in(ii,nc,sz,st) copies a

subset of signal coefficients from the device mem-

ory, into consecutive positions of the shared mem-

ory, adding a padding when necessary to avoid mem-

ory bank conflicts. Its behaviour is depicted in

Fig. 3 starting from the ii-th coefficient and copy-

ing nc chunks of size sc coefficients separated by

a stride st as shown in Fig. 3. Symmetrically,

GPU side, one block

copy_in(0,N,1,1);

for (i=0; i<s; i++) {

syncthreads();

fftL(i,i);

}

copy_out(0,N,1,1);

Figure 4: FFT of a signal fitting the shared memory.

copy out(ii,nc,sz,st) copies coefficients from

shared memory back to the device memory.

Function fftL(i,j) corresponds to the applica-

tion of the operator L(N,i,j)(x) as described in sec-

tion 1. Such a function is intended to be applied to

coefficient x, previously transferred to shared mem-

ory, and it operates in-place. The number of blocks of

threads is N
2r , where 2r is the number of coefficients

copied into shared memory. As this function is ex-

ecuted in a SIMD way, the b-th thread computes the

b-th butterfly transformation. Twiddle factors for this

case are determined by the b-th butterfly of the j-th

FFT stage, whereas the coefficients to be transformed

are those involved in the b-th butterfly of the i-th FFT

stage.

Let us analyze the naive case when the whole in-

put signal fits into the shared memory of one SIMD

multiprocessor (N ≤ 2r), whose implementation is

shown in Fig. 4. After a bit reversal permutation, co-

efficients are transferred to the shared memory, then

r invocations of fftL are executed and finally coef-

ficients are returned to the device memory. Note that

as all the threads belong to the only block, global syn-

chronization can be performed among threads. Also,

the original FFT scheme is applied locally (fftL ar-

guments are equal).

Now, we will consider the generic case consisting

on a signal whose size exceeds the available shared

memory of a multiprocessor (N > 2r). In this case

several multiprocessors are involved, meaning that

different blocks of threads must collaborate to per-

form the FFT. The first approach to be analyzed is a

straightforward solution, but it exploits barely the lo-

cality features of memory access pattern. As threads

of different blocks cannot be synchronized within ker-

nel code, required synchronization points must be

carried out in the host side through successive ker-

nel function invocations. Each kernel code invokes

copy in and copy out. Between these two invoca-

tions, several fftL stages need to be performed. The

larger the signal size, the larger the number of butter-

flies operators and also the larger the number of FFT

stages. Due to the fixed size of shared memories, the

input signal must be distributed among the blocks of
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Host side

q=min(r,s);

FirstKernel(q); -->

if (s>r) {

q=s-r;

NextKernel(q); -->

}

GPU side, block j

COPY_IN(j*2
q,1,2q,1);

for (i=1; i≤q; i++) {

syncthreads();

FFT_LEVEL(i,i);

}

COPY_OUT(j*2
q,1,2q,1);

COPY_IN(j,2q,1,2r);

for (i=1; i≤q; i++) {

syncthreads();

FFT_LEVEL(i,i+r);

}

COPY_OUT(j,2q,1,2r);

Figure 5: Straightforward FFT implementation for

large signals.

threads. Thus, a number of blocks of threads equal

to N
2r will work with their corresponding set of dis-

joint coefficients. Let us consider each block with a

set of 2r consecutive complex coefficients. This way

the first r FFT stages can be performed independently

of the work of other blocks. Nevertheless, threads

within the block must be synchronized before every

stage in order to ensure that its input coefficients are

updated by the previous stage. The remainder FFT

stages involve coefficients located at a distance larger

than 2r, that is, their copies are located on different

shared memories, on different multiprocessors. In or-

der to proceed forward, coefficients must be properly

rearranged. This fact involves a copy out and a host

synchronization prior to continue with the next stages.

At this point, all output coefficients of the r-th

FFT stage can be found in the device memory. With-

out loss of generality, let be 2r ≥ N/2r (2s ≤ 22r),

that is, the total number of FFT stages s is at most

2r. As these r levels have been just computed, only r
subsequent stages remain at most, and therefore only

a new kernel invocation is needed. In general, s
r

ker-

nel invocations will be required. Assigning the 2r se-

quences of size 2s−r coefficients with stride 2s to dif-

ferent blocks (one sequence per block), all the s − r
remaining stages can be performed as shown in Fig.5.

Observe that an important fact affects ad-

versely the performance of the second kernel call

(NextKernel). As threads are scheduled in warps

behaving like gangs of threads that execute the same

SIMD instruction, the memory addressing mode must

follow a specific pattern for an efficient execution. In

the case of global memory, threads of a same warp

must access to consecutive memory locations, other-

wise accesses are serialized. This condition is called

coalescing requirement. The approach of Fig. 5 suf-

fers from this lack of coalescing because memory lo-

Host side

q=min(r,s);

FFTKernel(q); -->

Transposition();-->

if (s>r) {

q=s-r;

FFTKernel(q); -->

}

Transposition();-->

GPU side, block j

COPY_IN(j*2
q,1,2q,1);

for (i=1; i≤q; i++) {

syncthreads();

FFT_LEVEL(i,i);

}

COPY_OUT(j*2
q,1,2q,1);

COPY_IN(...);

TranspositionCore();

COPY_OUT(...);

COPY_IN(j*2
q,1,2q,1);

for (i=0; i≤q; i++) {

syncthreads();

FFT_LEVEL(i,i+r);

}

COPY_OUT(j*2
q,1,2q,1);

COPY_IN(...);

TranspositionCore();

COPY_OUT(...);

Figure 6: FFT implementation for large signals using

matrix transpositions.

cations accessed by copy operations do not contain

chunks of consecutive coefficients.

A well known solution to this problem is to store

the input signal in a 2D matrix (2s1 × 2s2 with s =
s1 + s2), 1D FFT is applied to every row (first s1
stages), then the matrix is transposed and finally 1D

FFT is again applied to every row (last s2 stages).

In order to apply correctly these last stages, a trans-

formation of the transposed matrix is required as de-

scribed in [5]. This step can be avoided if these 1D

FFT stages use the corresponding twiddle factors of

the original FFT higher stages as shown in Fig. 6.

Note that input coefficients for the second invocation

to the FFTKernel are now located on consecutive po-

sitions satisfying memory access coalescing demands,

but this technique requires extra copy in/copy out

operations for each transposition stage. Details of the

transposition of a matrix can be found in [7], whose

data transfers between device and shared memory also

fulfill the coalescing requirements.

With the purpose of improving the data locality

in the higher levels of the FFT of large signals, we

propose the technique described as follows. The key

idea consists of transferring chunks of consecutive co-

efficients with a given stride among them, allowing

the application of higher FFT stages using lower FFT

stage access patterns. This technique is depicted in

Fig. 7. Observe that invocations to NextKernel are

not preceded by any transposition and, what is more

important, copy in/copy out operations meet the
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Host side

q=min(r,s);

FirstKernel(q); -->

if (s>r) {

q=min(r/2,s-r);

NextKernel(q); -->

}

if (s>r+r/2) {

q=s-r-r/2;

NextKernel(q); -->

}

GPU side, block j

COPY_IN(j*2
q,1,2q,1);

for (i=1; i≤q; i++){

syncthreads();

FFT_LEVEL(i,i);

}

COPY_OUT(j*2
q,1,2q,1);

COPY_IN((j+j/2q)*2
q,

2q,2q,2r);

for (i=r+1; i≤r+q; i++){

syncthreads();

FFT_LEVEL(i-q,i);

}

COPY_OUT((j+j/2q)*2
q,

2q,2q,2r);

COPY_IN((j+j/2q)*2
q,

2q,2q,2r+r/2);

for (i=r+1; i≤r+q; i++){

syncthreads();

FFT_LEVEL(i-q,i+r/2);

}

COPY_OUT((j+j/2q)*2
q,

2q,2q,2r+r/2);

Figure 7: Improved-locality FFT implementation for

large signals.

coalescing condition. This way, on avoiding transpo-

sition stages, the number of memory transfer opera-

tions is significatively reduced. The number of higher

FFT stages that can be mapped on lower ones depends

on the number of chunks (nC), in particular log2(nC)
stages. Moreover, the number of chunks depends on

the size of the chunks, which is determined by the

number of threads of a warp (coalescing condition).

For this reason, the host must invoke NextKernel

two times, half of the higher stages are performed in

each one.

By way of illustration, let us consider the case of

an FFT of an input signal whose size is 256 coeffi-

cients (8 FFT radix-2 stages), running on a GPU with

8 threads per block assembled in 4 threads per warp

and a shared memory with room for 16 coefficients

per block. With this configuration, the whole FFT can

be decomposed into 16 block of 16 consecutive coeffi-

cients (after a bit reversal permutation) performing the

four first FFT stages. Then, coefficients must be rear-

ranged in order to proceed with the next stages. As

warps are made of 4 threads, the chunk size is fixed

to 4 consecutive coefficients, but pairs of coefficients

separated 24 are required, so the stride is 16. Function

copy in(4j,4,4,16) collects all coefficients for

the j-th block, enabling it to perform 5th and 6th stages

using the access patterns of 3rd and 4th stages by

means of FFT LEVEL(3,5) and FFT LEVEL(4,6).

This is the same example shown in Fig. 2. Note

that 5th and 6th stages can not be remapped onto

stages 1st and 2nd because of their shared mem-

ory access pattern. This involves that stages 7th

and 8th must be performed after a new rearrange-

ment of the coefficients (copy in(4j,4,4,64);

FFT LEVEL(3,7); FFT LEVEL(4,8)).

According to the hardware specifications of the

target platform, the maximum number of threads per

block is 512, the maximum number of threads per

warp is 32 and the shared memory size is 8 Kbytes, so

1024 complex coefficients fit. First 10 FFT stages (r=
10) are performed in the invocation of FirstKernel,

while only 5 higher stages can be done in each invo-

cation to NextKernel. This fact is imposed by the

chunk size. Since there are 32 chunks of 32 coeffi-

cients in 1024 coefficients, the 6th stage is the first one

onto which a higher stage can be mapped. A lower

number of threads per warp allows NextKernel to

perform more stages, however the degree of paral-

lelism will decrease. In Fig. 7 the invocation to

FirstKernel performs r stages whilst invocations

to NextKernel perform at most r
2 stages.

5 Results

The locality improved strategy for the 1D com-

plex FFT above discussed has been implemented

and tested. Experiments have been conducted on a

NVIDIA GeForcer8800GTX GPU, which includes

16 multiprocessors of eight processors, working at

1.35GHz with a device memory of 768MB. Each

multiprocessor has a 8KB parallel data cache (shared

memory). The latency for global memory is about 200

clock cycles, whereas the latency for the shared mem-

ory is only one cycle.

Codes have been written in C using the version

1.0 of NVIDIAr CUDATM, recently released [7].

The manufacturer provides this version with the

CUFFT library, which allows the users to easily run

FFT transformations on the graphic platform. CUFFT

library offers an API modelled after FFTW [2], for

different kinds of transformation and dimensions. We

have chosen CUFFT to be used with the purpose of

measurement comparisons.

We have executed the forward and inverse FFT

measuring the number of GigaFLOPS obtained in

these two operations, including the scale factors of

inverse FFT. A common metric [2] considers that

the number of floating point operations required by

a radix-2 FFT is 5Nlog2(N). Thus, if the number of

seconds spent by the forward and inverse FFT are tFFT

and tIFFT, the number of GigaFLOPS for a N -sample
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Figure 8: Performance of FFT implementations for 1 single signal (a) and 8 batches of signals (b).

signal will be GFLOPS = 2 5Nlog2(N)
tFFT+tIFFT(sec)

10−9.

Results are shown in Fig. 8 for different signal

sizes. Fig. 8(a) corresponds to the execution of one

single signal and (b) to the execution of eight batches

of signals. The performance of the proposed local-

ity improved FFT implementation is compared to this

one of the CUFFT library. Note that the upper limit

in the number of coefficients is imposed by the mem-

ory size of the device. In fact, for high signal sizes

the CUFFT library is unable to perform the transform,

because its memory requirements exceed the available

global memory.

Some facts can be pointed out. First, the proposed

implementation makes a good exploitation of mem-

ory locality, allowing a good scalability with the sig-

nal size that is comparable to this one of the CUFFT

library. In fact, the locality improved implementa-

tion is able to outperform CUFFT for some particu-

lar signal sizes. Another important feature of the pro-

posed implementation is its ability to manage large

size signals. The CUFFT library is limited to 223 co-

efficients (about 8 million samples), even less when

several batches are executed at once. Nevertheless

our implementation can manage up to 226 coefficients

(about 64 million samples), making a better exploita-

tion of the available device memory.

6 Conclusions

This work discuss the locality features of some imple-

mentations of the Fast Fourier Transform on modern

graphics processing units. A radix-two decimation-in-

time FFT implementation is proposed, that can take

advantage of the GPU memory organization. With

this purpose, the proposed implementation intends to

exploit memory reference locality, making an opti-

mized use of the parallel data cache of the target

device. Compared to the FFT library provided by

the graphics processor manufacturer, our proposal ex-

hibits a good scalability and it is able to achieve a bet-

ter performance for certain signal sizes. In addition,

it is able to work with signals of larger size than the

manufacturer’s implementation.
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