
The Study of OCS Dynamic Parameters’ Testing based on System 
Response 

CHEN TANGLONG, MA FENGCHAO, ZHOU YAN 
College of Electrical Engineering, Southwest Jiaotong University 

North Erhuan road 111#, Chengdu, Sichuan 610031, CHINA 
tl_chen@126.com 

 
 

Abstract: This paper starts with dynamic response of pantograph slider, and computes the dynamic parameters 
of pantograph-catenary systems such as contact force, hard spot, pull-off value and contact wire height by utilizing the 
transfer function matrix gained beforehand and the displacements of pantograph slider measured with the laser range 
sensors configured at the low voltage side. The paper also deducts the numerical algorithm of response matrix and 
transfer function matrix, and verifies its effectiveness by simulation with a simple example. 
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1 Introduction 
Pantograph slider is moving fast under the overhead 
catenary when electric locomotive is running. Fig.1 
shows the effect of pantograph-catenary contact force 
and dynamic response of horizontal vibration of 
pantograph slider [1-3, 4]. 

 

 
Fig.1 Analysis of system signal 

 
Direct testing methods of pantograph-catenary 

contact force are commonly used domestically and 
abroad. However, because of fast motion, testing 
signals are vulnerable to the interference of 
electromagnetic sparks caused by 
pantograph-catenary contact vibration, and the 
installed pressure sensor increases the weight of 
slider and changes its shape. Therefore, the stability 
and safety of pantograph has been affected. 

The testing method proposed in this paper is to 
install several laser range sensors symmetrically at 
the top of the locomotive, calculates the dynamic 
parameters of the pantograph-catenary contact force, 
pull-off value, hard spot and contact wire height 
according to testing the horizontal vibration 
displacement at the bottom of the pantograph slider.  

 
 

2 Testing principle of pantograph 
catenary system’s contact response 
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Fig.2 Response testing model of pantograph slider 

 
The vibration of slider in the pantograph-catenary 
operation can be considered approximately as 
compound motion which includes horizontal bending 
vibration of elastic beam supported by fixed ends and 
fluctuation drive and planar wheel of rigid beam 
supported by elastic ends. Slider’s bending vibration 
mode can be solved by using Euler-Bernoulli beam 
[5]. iF  expresses pantograph-catenary contact pulse 
force exerting at the thi  spot of the slide beam. It 
indicates changes of the Pull-off value in different 
locations. iY  represents testing value of 
displacement from the thi  high-speed laser sensor on 
the top of locomotive corresponding the bottom of the 
pantograph slider. Their dynamic response can be 
expressed as the following matrix form in terms of 
transfer function:  
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ijM  can be obtained from unit impulse response. 
Therefore, according to convolution principle, 
pantograph-catenary contact force P  can be 
expressed as follows:  
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The impact acceleration of pantograph-catenary 

G , contact wire height H  and Pull-off value Z  can 
be obtained instantly from discrete displacement 
signal ),( ity  tested by those laser sensors, which  
are expressed as follows:  
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The parameters in (3), (4), (5) are as follows, where: 
0h      the base height of sensors on the top of 

locomotive. 
p      the number of laser sensors 
i     the distributing ordinal number of laser sensors 

iW   symmetrical weighting coefficients at geometric 
location about those laser sensors. 

 
 
3 Kinetics analysis of slider’s beam 
The model shown in Fig. 2 can be decomposed into a 
pantograph elastic slider’s beam supported by fixed 
ends and a pantograph rigid slider’s beam supported 
by elastic ends. After solving their dynamic response, 
horizontal response displacement ),( ity  can be 
added together at the same point of the axis under 
static equilibrium. 
 
3.1 Vibration of pantograph slider’s rigid 

beam in plane 
Supposing that the bracing spring stiffness is k , 
length of slider’s beam is l , the line density is ρ , 
mass is m , centriod is c , moment of inertia of 
slider’s rigid beam circling the centriod is cI , 
choosing centroid’s horizontal displacement y  and  
angular displacement of slider’s rigid beam circled 
the centriod as generalized coordinate � θ,y � , 
analyzing the forces exerting on the slider,  
Differential equation of forced vibration can be 
established as follows:  
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Assuming 0Pc = , from which the natural 
frequency of horizontal vibration and the cycling 
frequency of rigid beam around its centroid can be 
obtained respectively:     
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Fig.3 Mechanic model of slider’s rigid beam imposed 

by external force 
 

Adopting Duhamel integral method to solve (6) 
and (7), the composite horizontal vibration 
displacement ),( txy caused by horizontal vibration 
and the wheeling around the centroid at x  spot of 
slider’s rigid beam can be expressed as (10) when 
pantograph-catenary contact force affects on cl  spot 
as Fig.3 shows. 
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3.2 Bending vibration mode function of 

pantograph slider’s elastic beam 
Considering horizontal displacement y  of slider’s 
elastic beam supported by the fixed ends in the cross 
section symmetry plane as generalized coordinate, 
supposing that line density of the beam isρ , bending 
stiffness of it is EI, analysis of forces can be obtained 
as shown in Fig.4. Four order homogeneous PDE of 
slider’s beam’s horizontal vibration can be obtained 
based on D'Alembert's Principle and Torque 
Equilibrium Principle:  
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Formula of natural frequency (12) and horizontal 
bending vibration mode function of slider’s beam (13) 
can be obtained by using separation of variables and 
Collenov function to (11):  
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For the facility of calculation, parameters of 
vibrating slider’s beam can be chosen as Table1. 

 
Table1 Calculation parameters of vibrating slider’s 

beam 
Line density of slider’s 

beam ρ  
2.5 m/kg  

Elastic modulus of 
slider’s beam EI  

1720 Nm 2  

Length of slider’s beam 
 

1.0 m 

Elastic coefficient of 
springs on the ends of 

slider’s beam k  

 
2500 N/m 

 
Natural frequency of 1st order model is 94.5Hz, 

natural frequency of 2nd order model is 258Hz, 
natural frequency of 3rd order model is 505Hz, 
natural frequency of 4th order model is 829Hz. 

In (13), D can be arbitrary constants. Main 
vibration mode of the corresponding order about 
horizontal bending vibration of slider’s elastic beam 
can be obtained as long as liλ  corresponding to 
those natural frequencies is put into (13). 

 
3.3 Dynamic impulse response to pantograph 

slider’s elastic beam 
 

cP

x

  
Fig.5 Slider’s beam affected by unit impulse force 
 
Supposing there exists a pantograph-catenary contact 
force cP , the moving equation of free vibration can be 
obtained at clx =  spot of slider’s beam: 
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(13) is the vibration mode function of slider’s 
elastic beam. Regularizing the main vibration mode, 
using its orthogonal features, the equation (15) is 
available. 
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Supposing that those natural frequencies is nrω , 
main vibration mode is )(xrφ , where =r 1, 2, 3,…, 
the dynamic response to elastic beam can be 
expressed by modal superposition (coordinate 
transformation ) as:  
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Using orthogonal feature of main vibration mode, 
it can be solved by Duhamel integral method: 
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Putting (17) into (16), response to the generalized 
coordinates about slider’s elastic beam (18) can be 
obtained. 
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4 Solution of response matrix and 
transfer function matrix with 
numerical method 
To solve transfer function matrix [ ijM ] in (1), the 

response matrix [ ijD ] in the following        
equation (19) should be solved first:  
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The relationship of transfer function matrix [ ijM ] 

and response matrix [ ijD ] is expressed by the 
following equation: 

1][][ −= ijij DM                          �20� 
Steps of computation based on analysis of system 
response are as follows: 
(1)As Fig.2 shows, supposing a certain 
pantograph-catenary contact force 1F , imposing on 
the slider at the first certain spot from left to right, the 
displacement response values 1Y � 2Y � … � nY  
corresponding to those laser sensors can be calculated 
separately from (10) and (18). 1iD  can be calculated 
from (21): 

11 FDY ii ∗=                          �21�  
(2)The method to solve the other elements ijD  of 
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the matrix is similar to the way above. ijD  can be 
obtained by calculating from the following equation: 

jiji FDY ∗=                         �22� 

(3) [ ijM ] can be calculated from (20). 
(4) F  can be calculated from (1) and (2). 
(5) Geometric parameters and dynamic parameters of 

catenary can be calculated from (3), (4), and (5) 
separately. 

 
 
5 System simulation of response testing 
Configuring five laser testing displacement sensors 
symmetrically to test displacements of such five 
points as -0.4m, -0.2m, 0m, 0.2m, 0.4m at the bottom 
of pantograph slider, the response testing mode 
shown in Fig.2 can be simulated as shown in Fig.6. 
Where ρ  is 2.5 m/kg , EI  is 1720Nm2,  is 
0.8m, k  is 2500 N/m.  
Followed by the assumption that pantograph-catenary 
contact force 110N vertically imposed downward to 
the pantograph slider orderly at -0.4m, -0.2m, 0m, 
0.2m, 0.4m, displacement response values 1Y , 2Y , …, 

nY  of the spots corresponding to those laser sensors 
can be calculated respectively from (10) and (18). 
Response relation matrix (23) can be obtained from 
(21). 

3.7871e-006 2.5405e-006 -8.9403e-008 -3.9702e-007 -6.394e-007
1.0888e-006 8.2842e-007 -6.9536e-008 -2.6592e-007 -3.9702e-007
-9.9337e-009 -2.9801e-008 -4.9668e-008 -6.9536e-008 -8.9403e-008
0.00010028 -2.9547e-008 -
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Transfer function matrix (24) can be obtained from 
inversion of the above matrix D. 

2.6088e+005 -3.6746e+005 36664 14829 -3558.2
-3.4185e+005 4.587e+005 -7765.2 -36735 14829
-9.8061e+006 2.4319e+007 -3.6532e+007 -7765.2 36664
3.5312e+007 -6.2916e+007 2.4319e+007 4.587e+005 -3.6746e+005
-2.1932e+007 3.5

M=

312e+007 -9.8061e+006 -3.4185e+005 2.6088e+005
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In the case of using the pantograph-catenery 
contact force 150N again, imposing vertically on 
-0.4m and -0.2m spots downwards, from which 0Y  
can be obtained, and then contact force 150N can be 
solved by putting 0Y  into (2) in turn. In the case of 
using the contact force 110N again, imposing 
vertically on -0.25m spots downward, from which 

0Y  can be obtained, in turn, contact force 98.77N can 
be solved by putting 0Y  into (2). The error is 10%, 
which is mainly created by configuring location of 
those sensors. 

Supposing the pantograph-catenery contact force 
150N imposed vertically on -0.4m spots downward, 
as Fig.7 (a) shows, displacement response to the 
sensors’ each spot is shown in Fig.6 (a). Supposing 
the force  imposed on -0.2m, 0m, 0.2m, 0.4m, the 
function chart of forces (Fig.7 (b) - (e)) is 
corresponding to displacement response chart(Fig.6 
(b) - (e)).  

This shows that simulation using transfer function 
computational method conforms to the real situation. 

 

 
Fig.6 Slider beam’s deformation when apply 150N contact force on the pantograph 
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Fig.7 Contact forces of each corresponding points when apply 150N contact force on the pantograph 

 
 

6 Conclusion  
The method of testing dynamic parameters of 
high-speed railway OCS based on the system 
response principle makes sense to take the testing 
sensors away completely from the pantograph slide, 
which is the goal of dynamic testing of high-speed 
railway OCS on locomotive. Owning to the limit of 
scan cycle and processing time, other non-contact 
detection such as image processing and laser radar 
can not meet the testing needs of dynamic 
characteristic under high-frequency condition. In 
practical application, the authors consider that data 
should be tested directly in the lab and disposed by 
recursive analysis, and computational model should 
be rectified and verified. 
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