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Abstract: 

Development of numerical solution methods, has presented considerable contribution in this 

respect. In this paper, the continuity equation and the equation of motion for convective dominated 

flow are coupled with equation of pollution concentration transport. This numerical model presents 

a system of simple convective equations. A Cell Vertex Finite Volume Method is applied for 

solving the governing equations on triangular unstructured meshes. Using unstructured meshes 

provides great flexibility for modeling the flow in arbitrary and complex geometries, such as urban 

environments. The equation of continuity is simultaneously solved with convective equations in a 

coupled manner using Artificial Compressibility technique. In order to verify the model, numerical 

model results are compared with available experimental measurements for pollutant dispersion in 

an urban street canyon. The efficiency of the developed computer code is demonstrated by its 

application to simulation pollutant transport in urban environments.  
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1 Introduction 
      The production of high performance digital 

computers and development of efficient 

numerical modeling techniques have led to the 

development of powerful Computational Fluid 

Dynamics (CFD) models for solution of 

problems concerning fluid flow. Hence, the 

computer simulation of complicated flow cases 

has become one of the interesting areas of the 

research works by development of efficient and 

accurate numerical methods suitable for the 

complex solution domain. The control over 

properties and behavior of fluid flow and 

relative parameters are the advantages offered 

by CFD witch make it suitable for the 

simulation of the applied problems.  

The governing equation of pollution 

phenomena is formed by both transport and 

diffusion terms. However, definition of the 

coefficient of dispersion for every single type 

of pollution is not an easy task and the solution 

of diffusion terms (high order spatial 

derivatives) is time consuming. Therefore, for 

the cases where the diffusion part of this 

equation can be ignored, considerable 

simplification in both equation and solution 

procedures are gained. 

Artificial Compressibility technique for steady 

state equations is used to overcome the 

problem of imposing zero velocity divergence 

to the equation of motion. The governing 

conservative equations, which contain only 

first order spatial derivatives of the conserved 

variables, are solved using Cell Vertex Finite 

Volume Method on triangular unstructured 

meshes. Proper terms of artificial dissipation 

are used to stabilize the numerical solution 

procedure. An edge-base algorithm covered the 

efficiency shortcoming of the unstructured 

mesh data processing [1].  

In this paper, the two dimensional pollution 

transport module of NASIR (Numerical 

Analyzer for Scientific and Industrial 

Requirements) is introduced and applied for a 

reel case, after verification. 

As verification, the solution of continuity 

equations and fluid motion coupled with 

pollution concentration transport equation are 

used to simulate two-dimensional test cases for 

smoke transport in urban canyons which have 

available experimental measurements. In order 

to present ability of the numerical model 

dealing with real cases, the transport of 

pollution from a single source or several 

sources, point sources or line sources, due to 

wind effect in urban environment with 

geometrical complexities are simulated. The 

efficiency and accuracy of the developed 

model presents considerable achievement in 

numerical solution of engineering problems. 

 

 

2 Governing Equations  
For flow problems (Mach < 0.3), since density 

is constant, the fluid flow is considered 

incompressible. In high Reynolds number flow, 

the boundary layer is thin and very close to 

solid walls and the effects of viscosity are 

confined to a thin layer and ignorable in scale 

of flow field [2]. Outside the boundary layer  

convection dominated condition is acceptable 

for the fluid flow behavior. Considering 

isothermal condition for the flow problem 

decouples the energy equation from the 

governing equations. Hence, for the low 

velocity isothermal flow problems with high 

Reynolds numbers, the incompressible Euler 

equations are considered as the set of 

governing equations which consist of the 

continuity equation and momentum equations 

in Cartesian directions. 

In the incompressible form of Euler equations, 

time derivative term eliminates from continuity 

equation, and this matter presents some 

numerical difficulties in coupled solution of the 

continuity and the momentum equations. For 

steady state incompressible problems, the 

Artificial Compressibility technique helps to 

overcome this problem [3]. 

It is common to use a convection-diffusion 

equation for solving the pollutant concentration 

transport in fluid flow field. This equation 

consists of two convective and diffusive parts 

[4]. For high Reynolds number flows, the 

effect of diffusion is negligible in comparison 

with the convection due to velocity field. This 

is the usual case for the pollution transport due 

to wind flow in urban environments.  

In this work, the governing equations are 

simplified by considering the wind flow in 

Proceedings of the 7th WSEAS International Conference on Systems Theory and Scientific Computation, Athens, Greece, August 24-26, 2007      311



urban fields as incompressible, convection 

dominated, isothermal flow and by neglecting 

the turbulence effects and the effects of 

chemical reactions and diffusion for the 

pollutant concentration. The conservative form 

of the governing equations are written in vector 

form as follows: 

 

S
y

G

x

F

t

W
=

∂
∂

+
∂
∂

+
∂
∂

)(                                   (1) 





















=

C

v

u

p

W

o )/( 2βρ

 ,   





















+
=

uC

uv

pu

u

F oρ/
2

,   

 





















+
=

vC

pv

uv

v

G
oρ/

2

  ,  



















=

cs

S
0

0

0

 

 

Where, w represents the conserved variables 

and F and G are vectors of convective fluxes of 

w in x and y directions, respectively. u and v 

the components of velocity, p pressure and C 

volumetric percentage of concentration are four 

dependent variables. Here, oρ  represents the 

constant density and S is source term related to 

pollution production. This term has non-zero 

quantity at sources of pollution and keeps zero 

at all other points. The parameter β  is 

introduced using the analogy to the speed of 

sound in equation of state of compressible 

flow, by application of the Artificial 

Compressibility technique [5]. 

 

 

3 Numerical Formulations  
The governing equations are discretized by the 

application of cell vertex (overlapping) scheme 

of the finite volume method. This method gives 

the following formulation [3]: 
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Where Wi represents conserved variables at the 

center of control volume Ωi. F  and G  are the 

mean values of fluxes on the control volume 

boundary sides. Superscript n and n+1 show 

nth and the n+1th time stage. ∆t is the time step 

(proportional to the minimum mesh spacing) 

applied between time stages n and n+1. In 

present study, a three-stage Runge-Kutta 

scheme is used for stabilizing the 

computational process by damping high 

frequency errors, which this in turn, relaxes 

CFL condition [6]. 

The convective equations such as Euler 

equations do not provide any dissipation 

mechanism that would eliminate the 

oscillations near the high gradient regions. In 

order to damp unwanted numerical oscillations 

associated with the explicit solution of 

Convective term in the above algebraic 

equation, ∑ =
∆−∆= sidesN

k

n

ki xGyFWC
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)()( , a fourth 

order artificial dissipation term, 
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λε  is added to 

above algebraic formula in which ijλ  is a 

scaling factor and is computed using the 

maximum value of the spectral radii of every 

edgess
N  edges connected to node i and 

256/3256/1 ≤≤ ε . Here the Laplacian 

operator at every nodes i, ∑ =
−=∇ edgesN

j iji WWW
1

2 )( , 

is computed using the variables W at two end 

nodes of all 
edge

N  edges (which meet at node i ). 

The revised formula, which preserves the 

accuracy of the numerical solution is written in 

the following form [1]. 
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In the above equation, the quantities W at each 

node is modified at every time step by adding a 

residual term of 

StWDWCtWR iiii ∆+Ω−∆= /)]()([)(  which is 

computed using the quantities W at the nodes 

of boundary sides of the control volume Ωi. 

Hence, the edges are referred to all over the 

computation procedure. Therefore, it would be 

convenient to use the edge-base data structure 

for definition of unstructured meshes. It has 

been shown that using the edge-base 

computational algorithm reduces the number of 

addressing to the memory, and therefore, 

provides a 50% saving in computational CPU 

time [1]. 

Two types of boundary conditions are applied 

in this work; flow and solid wall boundary 

conditions.  The flow boundary condition is 

developed from the similarity to the one 

dimensional characteristic theory for the first 

order wave equations. From this theory, the 
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prorogation directions are defined according to 

the sign of the system waves of the 

incompressible convection dominated 

equations (Eigenvalues of the Jacobian matrix 

of the continuity and motion equations). The 

values of related quantities are imposed 

wherever the characteristics enter the 

computational domain. Conversely, at 

boundaries where characteristics leave the 

domain, nodal value of related quantities are 

determined from the interior solution domain. 

For incompressible flow, at the inflow 

boundaries free stream, values of u and v are 

imposed and p is extrapolated from inside 

domain nodes, and at the outflow boundaries 

free stream,  p is imposed and u and v are 

extrapolated from inside domain nodes. The 

nodal value of concentration variable C at flow 

boundaries follows the roles for u and v. Since 

the flow is considered convection dominated, 

at the solid wall nodes, the component of 

velocity vector normal to the solid boundary 

edges are set to zero [2]. 

 

 

4 Pollution Transport Verification  
The pollution transport module of NASIR 

(Numerical Analyzer for Scientific and 

Industrial Requirements) finite volume flow 

solver is verified in this section for this goal, 

numerical simulation of a laboratory set up 

(figure 1) is performed for modeling the 

pollution dispersion in an urban street canyon 

due to wind flow [7]. This case is used to 

evaluate the performance of the numerical 

convection dominated flow solver to simulate 

some experimental cases of concentration 

transport. 

3

3 or 5

4.5 or 320

66

Urban roughnesswalls

Source

cm

cm cm

cm

cmcm

Street canyon

(100,0)

 
Figure 1: The experimental wind tunnel which 

its measurements are used for the verification 

(the pollutant source position and the canyon). 

 

The test was carried out in a wind tunnel with 

0.34m×0.34m square cross section and 2m 

length. Wind flow is created by an axial fan 

placed at the end of the diffuser. The incoming 

flow is modified by a grid placed at the 

entrance of the test section. The free stream 

velocity is v∞ =1.7 m/s and is controlled by a 

fan anemometer. The velocity corresponds to 

mean flow Reynolds number of 3400, based on 

the height upstream canyon wall. In this 

Reynolds number the flow pattern is 

independent of viscous effects [8]. A simple 

configuration is applied to the canyon and 

urban roughness modeling. Two thin metal 

walls (thickness was about 1mm) parallel to 

each other and perpendicular to air flow which 

extended over the whole width of the test 

section, are used to model the two-dimensional 

street canyon and its urban roughness is 

simulated by putting similar street canyon 

upstream of the test street canyon. To model 

the pollution source an orifice for transfusing 

smoke to wind tunnel was installed on the floor 

(in the middle of the tunnel). The measured 

values consist of normalized concentration at 

three different levels of 5mm, 15mm and 

35mm above the tunnel floor. The 

concentration intensity of all measurements has 

been normalized using a reference value 

measured 5mm above the top of the upstream 

wall. 

The set up is used for three different 

conditions. In the first case a (reference), both 

of the canyon walls were 3cm in height with a 

4.5cm distance and the urban roughness 

(upstream walls) was eliminated. In the second 

case b (urban roughness) the geometry of the 

canyon itself remained unchanged, but two 

3cm high walls were put at distance of 6cm and 

12cm upstream of the test street canyon (as the 

urban roughness). In the third case c (heights 

ratio) the same conditions of the reference 

conditions have been applied, but only height 

of the second canyon wall has been increased 

to 5cm. 

The close view of the computed velocity 

vectors and contours of the concentration 

percentage are presented in figures 2 and 3, 

respectively. Numerical solution results of the 

concentration percentage are compared with 

experimental measurements in figures 4,5 and 

6. Note that, the computed results and 

experimental measurements for the sections 

35mm and 15mm above floor of the canyon are 

in good agreement with the experimental 

measurements (with less than 4% errors in 

figures 4 and 5). While in the section 5mm 

above the floor of the canyon (close to the 

tunnel floor) errors increase (figure 6), 

particularly for the reference case a in which 

the average error increases up to 20%.  

Proceedings of the 7th WSEAS International Conference on Systems Theory and Scientific Computation, Athens, Greece, August 24-26, 2007      313



120 120.5 121 121.5 122 122.5 123 123.5 124 124.5

x-position[mm]

0.5

1

1.5

2

2.5

3

3.5

4

4.5

y
-p
o
s
it
io
n
[m
m
]

1 m/s:

 
Figure 2.a: Computed velocity vectors Case a - 

reference 
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Figure 2.c: Computed velocity vectors Case c - 

heights ratio 
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Figure 2.b: Computed velocity vectors Case b - 

urban roughness 
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Figure 3.a: Computed velocity contours Case a 

– reference 

 

121 122 123 124

X-position

0

1

2

3

4

Y
-p
o
s
it
io
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.6

0.6

0.6

 
Figure 3.b: Computed velocity contours Case b 

- urban roughness 
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Figure 3.c: Computed velocity contours Case c 

- heights ratio 
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Case a: reference 
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Case b: urban roughness 
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Case c: heights ratio 

 
Figure 4: Horizontal profile of normalized 

concentration at 35mm height from    

  the canyon floor in three cases 
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Case a: reference 
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Case b: urban roughness 
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Case c: heights ratio 

 
Figure 5: Horizontal profile of normalized 

concentration at 15mm height from    

  the canyon floor in three cases 
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Case a: reference 
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Case b: urban roughness 
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Case c: heights ratio 

 
Figure 6: Horizontal profile of normalized 

concentration at 5mm height from    

  the canyon floor for three cases 

 

 

These are mainly because of neglecting the 

diffusive terms in the equations of motion and 

the transport equation, which is not consistent 

with the condition in low velocity part of the 

flow field (see figure 2.a). In such a condition 

the thickness of boundary layer increases, and 

hence, the effects of fluid viscosity, turbulent 

of flow field and natural diffusion of the 

concentration are important. Therefore, 

development proper parts to the present 

algorithm for modeling the aforementioned 

phenomena decrease errors. 

It can be concluded that, for mentioned 

conditions in the regions of the flow field that 

the boundary layer has negligible thickness, the 

use of transport model would provide 

acceptable results. 

 

 

5 Conclusions  
According to verification of the computer 

model, the model results are acceptable in a 

wide domain of flow fields in which the effect 

of viscosity and turbulent can be neglected. 

The two-dimensional transport numerical 

simulation has been successfully performed. 

For the considered set of urban canyon 

experimental test cases, the result of the 

developed model is in good agreements with 

the measured data, except close to solid walls 

in low velocity flow regions.  
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