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Abstract: In this paper, the problem of finding a stabilizing feedback controller for single input single output
switched systems of order two is addressed. To ensure stability under arbitrary switching, the existence of a com-
mon Lyapunov function (CLF) needs to be established. A method for establishing the existence of CLFs, given
suitable feedback controllers, is presented. The method presented here is computationally less demanding com-
pared to those that depend on linear matrix inequalities solvers.
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1 Introduction
Switched systems are a class of hybrid systems that
is made up of a collection of linear subsystems with
rules that govern switching between these subsystems
[1]. Stability of switched systems is an area of im-
portant study as switching sequences and dwell time
affect system behaviours and performances. Several
methods for determining stability of switched systems
have been recognised. Among these are the existence
of common or multiple Lyapunov functions, modify-
ing theorems, Poincar´e mappings and Lagrange-based
methods [2]. In this paper, our attention is focussed
on finding the existence of common Lyapunov func-
tions, as this ensures stability for arbitrary switch-
ing sequences. Some progress in this area have been
made, for example, in [3, 4, 5, 6]. Here, we present a
method for determining stabilizeability of single input
single output (SISO) switching systems where each
subsystem is a second order linear time invariant (LTI)
system.

2 Problem Definition
In this paper, we consider the class of switching sys-
tem denoted by

ẋ = Aix + Biu (1)

wherex ∈ IR2, u ∈ IR, A ∈ IR2×2, B ∈ IR2×1 and
i = 1, . . . , N .

The problem is to ensure quadratic stabilization
of (1). Formally, it is defined as follows.

Definition 1 System (1) is said to be quadratically
stabilizeable if there exists a set of state feedback con-
trol lawsui = Ai + BiKi such thatAi + BiKi, i =
1, 2, . . . , N, share a common quadratic Lyapunov
functionxT Mx.

3 The LMI Approach
One method of obtaining solutions to the problem
posed by Definition 1 is by solving the following lin-
ear matrix inequalities (LMI) [6]:

MAi + AT
i M + BiZi + ZT

i BT
i < 0,

M > 0
(2)

Then,

Ki = ZiM
−1 (3)

ensures stability of System (1).
While this is a powerful method which has been

shown to be capable of providing stable pole place-
ment feedback control of switched systems [6], the
computational burden could prove to be a limiting fac-
tor. As an example, consider the case of four switch-
ing models given by

A1 =

[
−4 −2
9 5

]
, b1 =

[
−1
2

]
,
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A2 =

[
2 −1

3
−3 0

]
, b2 =

[
5
−6

]
,

A3 =

[
−7 −6
19
2 8

]
, b3 =

[
6
−7

]
,

A4 =

[
−12 −11
13 12

]
, b4 =

[
−7
8

]
. (4)

It was found that feasibility of (2) could not be deter-
mined using Matlab’s LMI Lab.

4 The Proposed Method
We now present our methodology which is founded
on the well known fact that a single input system can
be uniquely transformed to its Brunovsky controllable
canonical form [7].

Lemma 2 Let (A, b) be a single input linear system.
Then, there exists a unique state transformation ma-
trix C which converts the system into the Brunovsky
canonical form

CAC−1 =




0 1 0 · · · 0
0 0 1 · · · 0

· · ·
· · · 1

a1 a2 a3 · · · an




, Cb =




0
0
...
...
1




where



a1

a2

a3
...

an




=
[

b Ab A2b . . . An−1b
]−1

Anb

with

Dn = b,

Di−1 = ADi − aib; i = n, n − 1, . . . , 2,

D =
[

D1 D2 D3 . . . Dn

]

and
C = D−1

Lemma 3 Given

M =

[
m1 m2

m2 m3

]
> 0,

there exists a feedback control lawu = Kx =[
k1 k2

]
x such that

Ã = A + bK =

[
0 1
α β

]

(i.e. the resulting closed loop system) hasM defining
its quadratic Lyapunov function if, and only if,m2 >
0.

Proof: No loss of generality arises from assuming
m1 = 1. Then, forM > 0 to have the required prop-
erty, it is required thatMÃ + ÃT M < 0, or equiva-
lently,

Q :=

[
2αm2 1 + αm3 + βm2

1 + αm3 + βm2 2(m2 + βm3)

]
< 0.

Given that the system is in the Brunovsky form,β is
the trace ofÃ and hence,β < 0 is a necessary con-
dition for closed loop stability. Also,m2 = 0 is not
allowed, andαm2 < 0 is necessary.

Suppose now thatm2 < 0 and α > 0. Then,
for Q < 0 to hold,det(Q) is required to be positive.
It is also easy to see that the maximum value of this
determinant occurs whenβm2 = αm3 − 1, and that
it is negative. Hence,m2 > 0 is a necessary condition
for Q < 0.

If m2 > 0 andα < 0, anyα < 0 can be cho-
sen and then, letβ = αm3−1

m2
. Then, det(Q) =

−4α(m3 − m2
2) > 0 and sufficiency is established.

ut

Definition 4 A matrix

M =

[
m1 m2

m2 m3

]

is said to be ‘an equivalence’ to the controllable
canonical form ifm2 > 0.

Lemma 5 Given a nonsingular matrix

C =

[
c1 c2

c3 c4

]
,

there exists ‘an equivalence’ matrixM > 0 such
that CTMC also has this property if, and only if, the
quadratic equation

c3c4x
2 + (c2c3 + c1c4)x + c1c2 > 0 (5)

has positive solutionx > 0.
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Proof: To prove sufficiency, proceed as follows.
Given M > 0 with m2 > 0, and calculatingM̃ =
CT MC gives

H(m1,m2,m3) := m̃12

= c3c4m3 + (c2c3 + c1c4)m2 + c1c2m1,
(6)

and from (5),H(1, x, x2) > 0. Hence, by conti-
nuity, there exists a small enoughε > 0 such that
H(1, x, x2 + ε) > 0. Settingm1 = 1, m2 = x and
m3 = x2 + ε now gives anM with the required prop-
erty.

To prove necessity, assume, without loss of gen-
erality, that there exists

M =

[
1 m2

m2 m3

]
> 0

such that bothM andCTMC have the desired prop-
erty, i.e. m2 > 0 and H(1, x, x2) > 0. Now,
if c3c4 > 0, clearly (5) has a positive solution. If
c3c4 < 0, then, sincem3 > m2

2,

H(m1,m2,m
2
2) ≥ H(m1,m2,m3) > 0, (7)

andm2 is a positive solution of (5). ut
For a given state transformation matrixC, the so-

lution of (5) consists of one or two open intervals, or
it could be empty. UseI to denote the set of solutions.

Still with the single input assumption, letΛ =
{1, 2, . . . , N − 1} be a finite set. Then, for each
switched model, denote the state transformation ma-
trix which converts it to the Brunovsky canonical form
by Ci, i = 1, 2, . . . , N . By Lemma 2, each transfor-
mation matrix is uniquely defined. Letzi = Cix and
setTj = C1C

−1
j+1, j = 1, 2, . . . , N − 1. In this no-

tation,Tj is the state transformation matrix fromzj+1

to z1, i.e.

z1 = C1x = C1C
−1
j+1zj+1 = Tjzj+1.

Next, classifyTj according totj3t
j
4 into the following

three categories:

Sp = {j ∈ Λ | tj3t
j
4 > 0},

Sn = {j ∈ Λ | tj3t
j
4 < 0},

Sz = {j ∈ Λ | tj3t
j
4 = 0}.

Then,Λ = Sp ∪ Sn ∪ Sz. Also, for j ∈ Sz, define

rj = tj2t
j
3 + tj1t

j
4

sj = tj1t
j
2

, j ∈ Sz, (8)

and, for the other cases, define

pj =
tj1

tj3
, qj =

tj2

tj4
, j ∈ Sp ∪ Sn. (9)

For eachj ∈ Sz, define a linear form as

Lj = rjx + sj, j ∈ Sz

and, for eachj ∈ Sp or j ∈ Sn, define a quadratic
form as

Qj = x2 + (pj + qj)x + pjqj, j ∈ Sp ∪ Sn. (10)

Then, by Lemma 5, obtain (or solve)x from

Qj (x) < 0, j ∈ Sn,
Qj (x) > 0, j ∈ Sp,
Lj (x) > 0, j ∈ Sz.

Note also that the polynomialQj (x) of (10) has
roots{−pj,−qj} and hence, the solution set can be
defined as follows:
If j ∈ Sp, an open set is defined as

Ij = (−∞,min(−pj,−qj) ∪ (max(−pj,−qj),∞).

If j ∈ Sn, an open set is defined as

Ij = (min(−pj ,−qj) ∪ (max(−pj,−qj)).

If j ∈ Sz, and sinceTj is nonsingular, it follows that
rj 6= 0. Hence, an open set can be defined as

Ij =

{
(− sj

rj
,∞), rj > 0,

(−∞,− sj

rj
), rj < 0.

The following result now follows immediately from
Lemma 5.

Theorem 6 1. A sufficient condition for the
switched system (1) to be quadratically stabi-
lizeable is

I =
N−1⋂

j=1

Ij 6= ∅. (11)

2. If all j ∈ Sp, j = 1, · · · , N−1, then the switched
system (1) is always stabilizeable.

3. If all i ∈ Sn, i = 1, · · · , N − 1, (11) is also
necessary.

Proof: To prove 1, choosem2 ∈ I andm3 = m2
2 + ε.

Then, it follows immediately that, for small enoughε,
the corresponding matrix (inz1 co-ordinates)

M =

[
1 m2

m2 m3 + ε

]

becomes (for suitably chosen controls) the common
quadratic Lyapunov function.
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In the case of 2, choosem2 large enough and then,
m2 ∈ I.

In the case of 3, the inequality (7) from the proof
of Lemma 5 shows thatm2 ∈ I, and therefore,I 6= ∅.
ut

In the case ofN = 2, the above result is, from
Lemma 5, necessary and sufficient. In general how-
ever, this property does not always hold. The follow-
ing result gives conditions for the general case.

Theorem 7 Let Λ = {1, 2, . . . , N − 1}. Then, the
system considered here is quadratically stabilizeable
if, and only if, there exists a positivex such that

min
j∈Sn

Qj (x) < 0,

min
j∈Sp

Qj (x) > min
j∈Sn

Qj (x) ,

Lj (x) > 0, I ∈ Sz.

(12)

Proof: Assume that there is a quadratic Lyapunov
function inz1 coordinates which is expressed as

M1 =

[
1 m2

m2 m3

]

and, by Lemma 3,m2 > 0. It is easy to see from
the proof of Lemma 5 thatM1 is a common quadratic
Lyapunov function for the other models if, and only
if, Hj(1,m2,m3) > 0, j = 1, 2, . . . , N − 1, or

m3 + (pj + qj)m2 + pjqj > 0, j ∈ Sp,
m3 + (pj + qj)m2 + pjqj < 0, j ∈ Sn,

rjm2 + sj > 0, j ∈ Sz.
(13)

Also, sincem3 > m2
2, the first two equations in (13)

can be rewritten as

e + m2
2 + (pj + qj)m2 + pjqj > 0, j ∈ Sp,

e + m2
2 + (pj + qj)m2 + pjqj < 0, j ∈ Sn

(14)
wheree > 0, and the necessity of (12) is obvious.

To prove sufficiency, assume that there is a solu-
tion x such thatmin

j∈Sp

Qj (x) > 0. Then,m2 andm3

can be chosen such thatm2 = x andm3 = x2 + ε,
with ε > 0 small enough to ensure that (13) holds.
Otherwise, setw = min

j∈Sp

Qj (x) ≤ 0. Then choose

m2 = x and

m3 = x2 +
1
2

(
min
j∈Sp

Qj (x) − max
j∈Sp

Qj (x)
)
− w,

and it is easy to see that (13) holds. Hence, the matrix

M =

[
1 m2

m2 m3

]

in this case meets the requirement. ut
Return now to Theorem 6. Then, in fact, it has

been proven that the system is stabilizeable if allj ∈
Sp or, if all j ∈ Sn, j = 1, . . . , N − 1, then, (11) is
also necessary. WhenN ≤ 3, however, the following
is true:

Corollary 8 If N ≤ 3, then (11) is also necessary.

Proof: For the case whenN = 2, it was proved
in Lemma 5. To prove this result for the case when
N = 3, first, constructT1 andT2. If both j = 1 and
j = 2 are inSp (or Sn), the result has been proven
in Theorem 6. Without loss of generality, assume that
j = 1 ∈ Sp andj = 2 ∈ Sn and to establish necessity,
assumeI1 ∩ I2 = ∅. Then

p1 ≥ p2 ≥ q2 ≥ q1.

Again, without loss of generality, it can be assumed
thatp1 ≥ q1 andp2 ≥ q2. Now, it is obvious that

Q2(x) ≥ Q1(x), x ∈ (q2, p2) (15)

and the result follows immediately. ut
Now, note that the first inequality in (12) is equiv-

alent to

min {pk, qk} < x < max {pk, qk} , k ∈ Sn

and the second inequality in this set is equivalent to

(pj + qj − pk − qk)x + pjqj − pkqk > 0,
j ∈ Sp, k ∈ Sn

(or eachQj , j ∈ Sp is greater than eachQk, k ∈
Sn). Also, since a positive solution is required, the
following result ensues.

Corollary 9 The switched system considered here is
quadratically stabilizeable if, and only if, the follow-
ing set of linear inequalities have a solution

min {pk, qk} < x < max {pk, qk} , k ∈ Sn,
(pj + qj − pk − qk) x + pjqj − akqk > 0, j ∈ Sp,

k ∈ Sn,
rjx + sj > 0, j ∈ Sz,

x > 0.
(16)

Recalling the proof of Lemma 3, a stabilizing
control law is easily constructed.

Theorem 10 Let (A, b) be a canonical system of the
form
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ẋ =

[
0 1

a21 a22

]
x +

[
0
1

]
u (17)

and

M =

[
m1 m2

m2 m3

]

with m2 > 0. ThenxT Mx is a quadratic Lyapunov
function for the closed loop system under the action of
the control law

u = kx =
(

(α − a21)
(

αm3−m1
m2

− a22

) )
x

(18)
whereα < 0 is an arbitrary real number.

Note that (18) is not unique.
We now perform this method, step by step, on the

example system (4) shown previously.

• Step 1Use Lemma 2 to obtain the state transi-
tion matricesCi such that in the coordinate frame
zi, the i-th switching model is in the Brunovsky
canonical form.

C1 =

[
2 1
1 1

]
, C2 =

[
−2 −5

3
1 2

3

]
,

C3 =

[
7
6 1
4
3 1

]
, C4 =

[
8
3

7
3

−5
3 −4

3

]
.

• Step 2Define another set of state transformation
matricesTj = C1C

−1
j+1, j = 1, . . . , N − 1, such

thatz1 = Tjzj+1.

T1 =

[
1 4
−1 −1

]
, T2 =

[
−4 5
2 −1

]
,

T3 =

[
−3 −6
1 1

]
.

• Step 3Calculatepj andqj by (9) if j ∈ Sp ∪ Sn,
andrj andsj by (8) if j ∈ Sz.

ForT1,

t13t
1
4 = 1, j = 1 ∈ Sp,

p1 = −1, q1 = −4.

ForT2,

t23t
2
4 = −2, j = 2 ∈ Sn,

p1 = −2, q1 = −5.

ForT3,

t33t
3
4 = 1, j = 3 ∈ Sp,

p1 = −3, q1 = −6.

• Step 4Construct the system of inequalities (16)
and find a solutionx = x0. Note: If there is
no solution, the problem considered is not math-
ematically stabilizeable.

j = 1 ∈ Sp andk = 2 ∈ Sn:

(p1 + q1 − p2 − q2)x + p1q1 − p2q2

= 2x − 6 > 0.

j = 3 ∈ Sp andk = 2 ∈ Sn:

(p3 + q3 − p2 − q2)x + p3q3 − p2q2

= −2x + 8 > 0.

The complete set of inequalities (16) is then

2 < x < 5,
2x − 6 > 0,

−2x + 8 > 0,
x > 0

with solution3 < x < 4. Choose for example,
x0 = 3.5.

• Step 5Using the inequalities (14), setm2 = x0

to find a positive solutione > 0. Setm3 = m2
2 +

e. Construct a positive definite matrix

M1 =

[
1 m2

m2 m3

]
> 0

which is a common quadratic Lyapunov function
for all switching models with certain feedback
control laws.Note: If Step 4 has a solution, then,
mathematically, there exist solutions for the in-
equalities (14).

With x0 = 3.5,

e + 12.5 + (−1 − 4) × 3.5 + 4 > 0,
e + 12.5 + (−3 − 6) × 3.5 + 18 > 0,
e + 12.5 + (−2 − 5) × 3.5 + 10 > 0,

e > 0

giving1 < e < 2. Choose, for example,e = 1.5.
Then,

M1 =

[
1 3.5

3.5 14

]
.
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• Step 6ConvertM1 to each canonical coordinate
system using

Mj+1 = T T
j M1Tj, j = 1, . . . , N − 1.

Then, convert model(Ai, bi) to its canonical rep-
resentation

Ãi = CiAiC
−1
i , b̃i =

[
0 1

]T
,

i = 1, . . . , N

and use (18) to construct the feedback gainski.

M2 =

[
8 0.5

0.5 2

]
, M3 =

[
16 1
1 4

]
,

M4 =

[
2 0.5

0.5 8

]
.

Ã1 =

[
0 1
2 1

]
, Ã2 =

[
0 1
1 2

]
,

Ã3 =

[
0 1
−1 1

]
, Ã4 =

[
0 1
1 0

]
.

Set, for example,α = −1 < 0, and hence,

k1 =
[
−3 −37

7

]
, k2 =

[
−2 −22

]
,

k3 =
[

0 −21
]
, k4 =

[
−2 −20

]
.

• Step 7Revert to the original coordinatex, where
the controls are

Ki = kiCi, i = 1, . . . , N.

The common quadratic Lyapunov function for all
closed loop switching models is then

M = CT
1 M1C1.

Hence,

K1 =
[
−11.29 −8.29

]
,

K2 =
[
−18 −11.33

]
,

K3 =
[
−28 −21

]
,

K4 =
[

28 22
]

and

M0 =

[
32 26.5

26.5 22

]
.

Clearly,

M0(Ai + biKi) + (Ai + biKi)T M0 < 0,

i = 1, 2, 3, 4.

Hence, this system is quadratically stabilizeable.

5 Conclusion
The problem of finding stabilizing feedback con-
trollers for single input single output switching sys-
tems comprising of subsystems that are second order
linear time-invariant has been addressed. The problem
relies on finding a common Lyapunov function (CLF)
for all subsystems. A method has been presented by
which the existence of a CLF that is shared by all sub-
systems, given appropriate control parameters, could
be determined. Using appropriate transformations to
and from the Brunovsky form, the required control pa-
rameters can then be identified.
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