A Method for Determining Stabilizeability of a Class of Switched Systems

SALLEHUDDIN MOHAMED HARIS
Universiti Kebangsaan Malaysia
Dept. of Mech. and Materials Eng.
Faculty of Engineering
43600 UKM Bangi
MALAYSIA

MOHAMAD HANIF MD SAAD
Universiti Kebangsaan Malaysia
Faculty of Engineering
43600 UKM Bangi
MALAYSIA

Dept. of Mech. and Materials Eng. School of Electronics and Comp. Sc.

ERIC ROGERS
University of Southampton
UNITED KINGDOM

Abstract

In this paper, the problem of finding a stabilizing feedback controller for single input single output switched systems of order two is addressed. To ensure stability under arbitrary switching, the existence of a common Lyapunov function (CLF) needs to be established. A method for establishing the existence of CLFs, given suitable feedback controllers, is presented. The method presented here is computationally less demanding compared to those that depend on linear matrix inequalities solvers.

Key-Words: Hybrid systems, Common Lyapunov functions, Stability under arbitrary switching, Brunovsky canonical form, State transformation

1 Introduction

Switched systems are a class of hybrid systems that is made up of a collection of linear subsystems with rules that govern switching between these subsystems [1]. Stability of switched systems is an area of important study as switching sequences and dwell time affect system behaviours and performances. Several methods for determining stability of switched systems have been recognised. Among these are the existence of common or multiple Lyapunov functions, modifying theorems, Poincaré mappings and Lagrange-based methods [2]. In this paper, our attention is focussed on finding the existence of common Lyapunov functions, as this ensures stability for arbitrary switching sequences. Some progress in this area have been made, for example, in $[3,4,5,6]$. Here, we present a method for determining stabilizeability of single input single output (SISO) switching systems where each subsystem is a second order linear time invariant (LTI) system.

2 Problem Definition

In this paper, we consider the class of switching system denoted by

$$
\begin{equation*}
\dot{x}=A_{i} x+B_{i} u \tag{1}
\end{equation*}
$$

where $x \in \mathbb{R}^{2}, u \in \mathbb{R}, A \in \mathbb{R}^{2 \times 2}, B \in \mathbb{R}^{2 \times 1}$ and $i=1, \ldots, N$.

The problem is to ensure quadratic stabilization of (1). Formally, it is defined as follows.

Definition 1 System (1) is said to be quadratically stabilizeable if there exists a set of state feedback control laws $u_{i}=A_{i}+B_{i} K_{i}$ such that $A_{i}+B_{i} K_{i}, i=$ $1,2, \ldots, N$, share a common quadratic Lyapunov function $x^{T} M x$.

3 The LMI Approach

One method of obtaining solutions to the problem posed by Definition 1 is by solving the following linear matrix inequalities (LMI) [6]:

$$
\begin{array}{cc}
M A_{i}+A_{i}^{T} M+B_{i} Z_{i}+Z_{i}^{T} B_{i}^{T} & <0, \tag{2}\\
M & >0
\end{array}
$$

Then,

$$
\begin{equation*}
K_{i}=Z_{i} M^{-1} \tag{3}
\end{equation*}
$$

ensures stability of System (1).
While this is a powerful method which has been shown to be capable of providing stable pole placement feedback control of switched systems [6], the computational burden could prove to be a limiting factor. As an example, consider the case of four switching models given by

$$
A_{1}=\left[\begin{array}{cc}
-4 & -2 \\
9 & 5
\end{array}\right], \quad b_{1}=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

$$
\begin{gather*}
A_{2}=\left[\begin{array}{cc}
2 & -\frac{1}{3} \\
-3 & 0
\end{array}\right], \quad b_{2}=\left[\begin{array}{c}
5 \\
-6
\end{array}\right], \\
A_{3}=\left[\begin{array}{cc}
-7 & -6 \\
\frac{19}{2} & 8
\end{array}\right], \quad b_{3}=\left[\begin{array}{c}
6 \\
-7
\end{array}\right], \\
A_{4}=\left[\begin{array}{cc}
-12 & -11 \\
13 & 12
\end{array}\right], \quad b_{4}=\left[\begin{array}{c}
-7 \\
8
\end{array}\right] . \tag{4}
\end{gather*}
$$

It was found that feasibility of (2) could not be determined using Matlab's LMI Lab.

4 The Proposed Method

We now present our methodology which is founded on the well known fact that a single input system can be uniquely transformed to its Brunovsky controllable canonical form [7].

Lemma 2 Let (A, b) be a single input linear system. Then, there exists a unique state transformation matrix C which converts the system into the Brunovsky canonical form

$$
C A C^{-1}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
& & & \cdots & \\
& & & \cdots & 1 \\
a_{1} & a_{2} & a_{3} & \cdots & a_{n}
\end{array}\right], C b=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
\vdots \\
1
\end{array}\right]
$$

where

$$
\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{ccccc}
b & A b & A^{2} b & \ldots & A^{n-1} b
\end{array}\right]^{-1} A^{n} b
$$

with

$$
\begin{gathered}
D_{n}=b \\
D_{i-1}=A D_{i}-a_{i} b ; \quad i=n, n-1, \ldots, 2 \\
D=\left[\begin{array}{ccccc}
D_{1} & D_{2} & D_{3} & \ldots & D_{n}
\end{array}\right]
\end{gathered}
$$

and

$$
C=D^{-1}
$$

Lemma 3 Given

$$
M=\left[\begin{array}{ll}
m_{1} & m_{2} \\
m_{2} & m_{3}
\end{array}\right]>0,
$$

there exists a feedback control law $u=K x=$ $\left[\begin{array}{ll}k_{1} & k_{2}\end{array}\right] x$ such that

$$
\widetilde{A}=A+b K=\left[\begin{array}{ll}
0 & 1 \\
\alpha & \beta
\end{array}\right]
$$

(i.e. the resulting closed loop system) has M defining its quadratic Lyapunov function if, and only if, $m_{2}>$ 0.

Proof: No loss of generality arises from assuming $m_{1}=1$. Then, for $M>0$ to have the required property, it is required that $M \widetilde{A}+\widetilde{A}^{T} M<0$, or equivalently,

$$
Q:=\left[\begin{array}{cc}
2 \alpha m_{2} & 1+\alpha m_{3}+\beta m_{2} \\
1+\alpha m_{3}+\beta m_{2} & 2\left(m_{2}+\beta m_{3}\right)
\end{array}\right]<0 .
$$

Given that the system is in the Brunovsky form, β is the trace of \widetilde{A} and hence, $\beta<0$ is a necessary condition for closed loop stability. Also, $m_{2}=0$ is not allowed, and $\alpha m_{2}<0$ is necessary.

Suppose now that $m_{2}<0$ and $\alpha>0$. Then, for $Q<0$ to hold, $\operatorname{det}(Q)$ is required to be positive. It is also easy to see that the maximum value of this determinant occurs when $\beta m_{2}=\alpha m_{3}-1$, and that it is negative. Hence, $m_{2}>0$ is a necessary condition for $Q<0$.

If $m_{2}>0$ and $\alpha<0$, any $\alpha<0$ can be chosen and then, let $\beta=\frac{\alpha m_{3}-1}{m_{2}}$. Then, $\operatorname{det}(Q)=$ $-4 \alpha\left(m_{3}-m_{2}^{2}\right)>0$ and sufficiency is established.

Definition 4 A matrix

$$
M=\left[\begin{array}{ll}
m_{1} & m_{2} \\
m_{2} & m_{3}
\end{array}\right]
$$

is said to be 'an equivalence' to the controllable canonical form if $m_{2}>0$.

Lemma 5 Given a nonsingular matrix

$$
C=\left[\begin{array}{ll}
c_{1} & c_{2} \\
c_{3} & c_{4}
\end{array}\right],
$$

there exists 'an equivalence' matrix $M>0$ such that $C^{T} M C$ also has this property if, and only if, the quadratic equation

$$
\begin{equation*}
c_{3} c_{4} x^{2}+\left(c_{2} c_{3}+c_{1} c_{4}\right) x+c_{1} c_{2}>0 \tag{5}
\end{equation*}
$$

has positive solution $x>0$.

Proof: To prove sufficiency, proceed as follows. Given $M>0$ with $m_{2}>0$, and calculating $\widetilde{M}=$ $C^{T} M C$ gives

$$
\begin{align*}
& H\left(m_{1}, m_{2}, m_{3}\right):=\widetilde{m}_{12} \\
& \quad=c_{3} c_{4} m_{3}+\left(c_{2} c_{3}+c_{1} c_{4}\right) m_{2}+c_{1} c_{2} m_{1}, \tag{6}
\end{align*}
$$

and from (5), $H\left(1, x, x^{2}\right)>0$. Hence, by continuity, there exists a small enough $\epsilon>0$ such that $H\left(1, x, x^{2}+\epsilon\right)>0$. Setting $m_{1}=1, m_{2}=x$ and $m_{3}=x^{2}+\epsilon$ now gives an M with the required property.

To prove necessity, assume, without loss of generality, that there exists

$$
M=\left[\begin{array}{cc}
1 & m_{2} \\
m_{2} & m_{3}
\end{array}\right]>0
$$

such that both M and $C^{T} M C$ have the desired property, i.e. $m_{2}>0$ and $H\left(1, x, x^{2}\right)>0$. Now, if $c_{3} c_{4}>0$, clearly (5) has a positive solution. If $c_{3} c_{4}<0$, then, since $m_{3}>m_{2}^{2}$,

$$
\begin{equation*}
H\left(m_{1}, m_{2}, m_{2}^{2}\right) \geq H\left(m_{1}, m_{2}, m_{3}\right)>0, \tag{7}
\end{equation*}
$$

and m_{2} is a positive solution of (5).
For a given state transformation matrix C, the solution of (5) consists of one or two open intervals, or it could be empty. Use I to denote the set of solutions.

Still with the single input assumption, let $\Lambda=$ $\{1,2, \ldots, N-1\}$ be a finite set. Then, for each switched model, denote the state transformation matrix which converts it to the Brunovsky canonical form by $C_{i}, i=1,2, \ldots, N$. By Lemma 2, each transformation matrix is uniquely defined. Let $z_{i}=C_{i} x$ and set $T_{j}=C_{1} C_{j+1}^{-1}, j=1,2, \ldots, N-1$. In this notation, T_{j} is the state transformation matrix from z_{j+1} to z_{1}, i.e.

$$
z_{1}=C_{1} x=C_{1} C_{j+1}^{-1} z_{j+1}=T_{j} z_{j+1} .
$$

Next, classify T_{j} according to $t_{3}^{j} t_{4}^{j}$ into the following three categories:

$$
\begin{aligned}
S_{p} & =\left\{j \in \Lambda \mid t_{3}^{j} t_{4}^{j}>0\right\}, \\
S_{n} & =\left\{j \in \Lambda \mid t_{3}^{j} t_{4}^{j}<0\right\}, \\
S_{z} & =\left\{j \in \Lambda \mid t_{3}^{j} t_{4}^{j}=0\right\} .
\end{aligned}
$$

Then, $\Lambda=S_{p} \cup S_{n} \cup S_{z}$. Also, for $j \in S_{z}$, define

$$
\begin{align*}
& r_{j}=t_{2}^{j} t_{3}^{j}+t_{1}^{j} t_{4}^{j}, \quad j \in S_{z}, \tag{8}\\
& s_{j}=t_{1}^{j} t_{2}^{j}
\end{align*}
$$

and, for the other cases, define

$$
\begin{equation*}
p_{j}=\frac{t_{1}^{j}}{t_{3}^{j}}, \quad q_{j}=\frac{t_{2}^{j}}{t_{4}^{j}}, \quad j \in S_{p} \cup S_{n} . \tag{9}
\end{equation*}
$$

For each $j \in S_{z}$, define a linear form as

$$
L_{j}=r_{j} x+s_{j}, \quad j \in S_{z}
$$

and, for each $j \in S_{p}$ or $j \in S_{n}$, define a quadratic form as

$$
\begin{equation*}
Q_{j}=x^{2}+\left(p_{j}+q_{j}\right) x+p_{j} q_{j}, \quad j \in S_{p} \cup S_{n} . \tag{10}
\end{equation*}
$$

Then, by Lemma 5, obtain (or solve) x from

$$
\begin{aligned}
Q_{j}(x) & <0, \quad j \in S_{n}, \\
Q_{j}(x) & >0, \quad j \in S_{p}, \\
L_{j}(x) & >0, \quad j \in S_{z} .
\end{aligned}
$$

Note also that the polynomial $Q_{j}(x)$ of (10) has roots $\left\{-p_{j},-q_{j}\right\}$ and hence, the solution set can be defined as follows:
If $j \in S_{p}$, an open set is defined as

$$
I_{j}=\left(-\infty, \min \left(-p_{j},-q_{j}\right) \cup\left(\max \left(-p_{j},-q_{j}\right), \infty\right) .\right.
$$

If $j \in S_{n}$, an open set is defined as

$$
I_{j}=\left(\min \left(-p_{j},-q_{j}\right) \cup\left(\max \left(-p_{j},-q_{j}\right)\right) .\right.
$$

If $j \in S_{z}$, and since T_{j} is nonsingular, it follows that $r_{j} \neq 0$. Hence, an open set can be defined as

$$
I_{j}= \begin{cases}\left(-\frac{s_{j}}{r_{j}}, \infty\right), & r_{j}>0, \\ \left(-\infty,-\frac{s_{j}}{r_{j}}\right), & r_{j}<0 .\end{cases}
$$

The following result now follows immediately from Lemma 5.

Theorem 6 1. A sufficient condition for the switched system (1) to be quadratically stabilizeable is

$$
\begin{equation*}
I=\bigcap_{j=1}^{N-1} I_{j} \neq \emptyset . \tag{11}
\end{equation*}
$$

2. If all $j \in S_{p}, j=1, \cdots, N-1$, then the switched system (1) is always stabilizeable.
3. If all $i \in S_{n}, i=1, \cdots, N-1,(11)$ is also necessary.

Proof: To prove 1, choose $m_{2} \in I$ and $m_{3}=m_{2}^{2}+\epsilon$. Then, it follows immediately that, for small enough ϵ, the corresponding matrix (in z_{1} co-ordinates)

$$
M=\left[\begin{array}{cc}
1 & m_{2} \\
m_{2} & m_{3}+\epsilon
\end{array}\right]
$$

becomes (for suitably chosen controls) the common quadratic Lyapunov function.

In the case of 2 , choose m_{2} large enough and then, $m_{2} \in I$.

In the case of 3 , the inequality (7) from the proof of Lemma 5 shows that $m_{2} \in I$, and therefore, $I \neq \emptyset$.

In the case of $N=2$, the above result is, from Lemma 5, necessary and sufficient. In general however, this property does not always hold. The following result gives conditions for the general case.

Theorem 7 Let $\Lambda=\{1,2, \ldots, N-1\}$. Then, the system considered here is quadratically stabilizeable if, and only if, there exists a positive x such that

$$
\begin{align*}
\min _{j \in S_{n}} Q_{j}(x) & <0, \\
\min _{j \in S_{p}} Q_{j}(x) & >\min _{j \in S_{n}} Q_{j}(x), \tag{12}\\
L_{j}(x) & >0, \quad I \in S_{z} .
\end{align*}
$$

Proof: Assume that there is a quadratic Lyapunov function in z_{1} coordinates which is expressed as

$$
M_{1}=\left[\begin{array}{cc}
1 & m_{2} \\
m_{2} & m_{3}
\end{array}\right]
$$

and, by Lemma $3, m_{2}>0$. It is easy to see from the proof of Lemma 5 that M_{1} is a common quadratic Lyapunov function for the other models if, and only if, $H_{j}\left(1, m_{2}, m_{3}\right)>0, j=1,2, \ldots, N-1$, or

$$
\begin{align*}
m_{3}+\left(p_{j}+q_{j}\right) m_{2}+p_{j} q_{j} & >0, \quad j \in S_{p}, \\
m_{3}+\left(p_{j}+q_{j}\right) m_{2}+p_{j} q_{j} & <0, \quad j \in S_{n}, \\
r_{j} m_{2}+s_{j} & >0, \quad j \in S_{z} . \tag{13}
\end{align*}
$$

Also, since $m_{3}>m_{2}^{2}$, the first two equations in (13) can be rewritten as

$$
\begin{align*}
& e+m_{2}^{2}+\left(p_{j}+q_{j}\right) m_{2}+p_{j} q_{j}>0, \quad j \in S_{p}, \\
& e+m_{2}^{2}+\left(p_{j}+q_{j}\right) m_{2}+p_{j} q_{j}<0, \quad j \in S_{n} \tag{14}
\end{align*}
$$

where $e>0$, and the necessity of (12) is obvious.
To prove sufficiency, assume that there is a solution x such that $\min _{j \in S_{p}} Q_{j}(x)>0$. Then, m_{2} and m_{3} can be chosen such that $m_{2}=x$ and $m_{3}=x^{2}+\epsilon$, with $\epsilon>0$ small enough to ensure that (13) holds. Otherwise, set $w=\min _{j \in S_{p}} Q_{j}(x) \leq 0$. Then choose $m_{2}=x$ and

$$
m_{3}=x^{2}+\frac{1}{2}\left(\min _{j \in S_{p}} Q_{j}(x)-\max _{j \in S_{p}} Q_{j}(x)\right)-w
$$

and it is easy to see that (13) holds. Hence, the matrix

$$
M=\left[\begin{array}{cc}
1 & m_{2} \\
m_{2} & m_{3}
\end{array}\right]
$$

in this case meets the requirement.
Return now to Theorem 6. Then, in fact, it has been proven that the system is stabilizeable if all $j \in$ S_{p} or, if all $j \in S_{n}, j=1, \ldots, N-1$, then, (11) is also necessary. When $N \leq 3$, however, the following is true:

Corollary 8 If $N \leq 3$, then (11) is also necessary.

Proof: For the case when $N=2$, it was proved in Lemma 5. To prove this result for the case when $N=3$, first, construct T_{1} and T_{2}. If both $j=1$ and $j=2$ are in $S_{p}\left(\right.$ or $\left.S_{n}\right)$, the result has been proven in Theorem 6. Without loss of generality, assume that $j=1 \in S_{p}$ and $j=2 \in S_{n}$ and to establish necessity, assume $I_{1} \cap I_{2}=\emptyset$. Then

$$
p_{1} \geq p_{2} \geq q_{2} \geq q_{1}
$$

Again, without loss of generality, it can be assumed that $p_{1} \geq q_{1}$ and $p_{2} \geq q_{2}$. Now, it is obvious that

$$
\begin{equation*}
Q_{2}(x) \geq Q_{1}(x), \quad x \in\left(q_{2}, p_{2}\right) \tag{15}
\end{equation*}
$$

and the result follows immediately.
Now, note that the first inequality in (12) is equivalent to

$$
\min \left\{p_{k}, q_{k}\right\}<x<\max \left\{p_{k}, q_{k}\right\}, \quad k \in S_{n}
$$

and the second inequality in this set is equivalent to

$$
\begin{gathered}
\left(p_{j}+q_{j}-p_{k}-q_{k}\right) x+p_{j} q_{j}-p_{k} q_{k}>0 \\
j \in S_{p}, k \in S_{n}
\end{gathered}
$$

(or each $Q_{j}, j \in S_{p}$ is greater than each $Q_{k}, k \in$ S_{n}). Also, since a positive solution is required, the following result ensues.

Corollary 9 The switched system considered here is quadratically stabilizeable if, and only if, the following set of linear inequalities have a solution

$$
\begin{align*}
\min \left\{p_{k}, q_{k}\right\}<x<\max \left\{p_{k}, q_{k}\right\}, & k \in S_{n} \\
\left(p_{j}+q_{j}-p_{k}-q_{k}\right) x+p_{j} q_{j}-a_{k} q_{k}>0, & j \in S_{p} \\
& k \in S_{n} \\
r_{j} x+s_{j}>0, & j \in S_{z} \\
x>0 . & \tag{16}
\end{align*}
$$

Recalling the proof of Lemma 3, a stabilizing control law is easily constructed.

Theorem 10 Let (A, b) be a canonical system of the form

$$
\dot{x}=\left[\begin{array}{cc}
0 & 1 \tag{17}\\
a_{21} & a_{22}
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u
$$

and

$$
M=\left[\begin{array}{ll}
m_{1} & m_{2} \\
m_{2} & m_{3}
\end{array}\right]
$$

with $m_{2}>0$. Then $x^{T} M x$ is a quadratic Lyapunov function for the closed loop system under the action of the control law

$$
u=k x=\left(\begin{array}{ll}
\left(\alpha-a_{21}\right) & \left.\left(\frac{\alpha m_{3}-m_{1}}{m_{2}}-a_{22}\right)\right) x \tag{18}
\end{array}\right)
$$

where $\alpha<0$ is an arbitrary real number.
Note that (18) is not unique.
We now perform this method, step by step, on the example system (4) shown previously.

- Step 1 Use Lemma 2 to obtain the state transition matrices C_{i} such that in the coordinate frame z_{i}, the i-th switching model is in the Brunovsky canonical form.

$$
\begin{aligned}
& C_{1}=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right], \quad C_{2}=\left[\begin{array}{cc}
-2 & -\frac{5}{3} \\
1 & \frac{2}{3}
\end{array}\right] \\
& C_{3}=\left[\begin{array}{ll}
\frac{7}{6} & 1 \\
\frac{4}{3} & 1
\end{array}\right], \quad C_{4}=\left[\begin{array}{cc}
\frac{8}{3} & \frac{7}{3} \\
-\frac{5}{3} & -\frac{4}{3}
\end{array}\right] .
\end{aligned}
$$

- Step 2 Define another set of state transformation matrices $T_{j}=C_{1} C_{j+1}^{-1}, j=1, \ldots, N-1$, such that $z_{1}=T_{j} z_{j+1}$.

$$
\begin{gathered}
T_{1}=\left[\begin{array}{cc}
1 & 4 \\
-1 & -1
\end{array}\right], \quad T_{2}=\left[\begin{array}{cc}
-4 & 5 \\
2 & -1
\end{array}\right] \\
T_{3}=\left[\begin{array}{cc}
-3 & -6 \\
1 & 1
\end{array}\right]
\end{gathered}
$$

- Step 3 Calculate p_{j} and q_{j} by (9) if $j \in S_{p} \cup S_{n}$, and r_{j} and s_{j} by (8) if $j \in S_{z}$.
For T_{1},

$$
\begin{gathered}
t_{3}^{1} t_{4}^{1}=1, \quad j=1 \in S_{p} \\
p_{1}=-1, \quad q_{1}=-4
\end{gathered}
$$

For T_{2},

$$
\begin{aligned}
t_{3}^{2} t_{4}^{2} & =-2, \quad j=2 \in S_{n} \\
p_{1} & =-2, \quad q_{1}=-5
\end{aligned}
$$

For T_{3},

$$
\begin{gathered}
t_{3}^{3} t_{4}^{3}=1, \quad j=3 \in S_{p} \\
p_{1}=-3,
\end{gathered} q_{1}=-6 .
$$

- Step 4 Construct the system of inequalities (16) and find a solution $x=x_{0}$. Note: If there is no solution, the problem considered is not mathematically stabilizeable.
$j=1 \in S_{p}$ and $k=2 \in S_{n}$:

$$
\begin{gathered}
\left(p_{1}+q_{1}-p_{2}-q_{2}\right) x+p_{1} q_{1}-p_{2} q_{2} \\
=2 x-6>0
\end{gathered}
$$

$j=3 \in S_{p}$ and $k=2 \in S_{n}:$

$$
\begin{gathered}
\left(p_{3}+q_{3}-p_{2}-q_{2}\right) x+p_{3} q_{3}-p_{2} q_{2} \\
=-2 x+8>0
\end{gathered}
$$

The complete set of inequalities (16) is then

$$
\begin{aligned}
2< & x \\
2 x-6 & >0 \\
-2 x+8 & >0 \\
x & >0
\end{aligned}
$$

with solution $3<x<4$. Choose for example, $x_{0}=3.5$.

- Step 5 Using the inequalities (14), set $m_{2}=x_{0}$ to find a positive solution $e>0$. Set $m_{3}=m_{2}^{2}+$ e. Construct a positive definite matrix

$$
M_{1}=\left[\begin{array}{cc}
1 & m_{2} \\
m_{2} & m_{3}
\end{array}\right]>0
$$

which is a common quadratic Lyapunov function for all switching models with certain feedback control laws. Note: If Step 4 has a solution, then, mathematically, there exist solutions for the inequalities (14).
With $x_{0}=3.5$,

$$
\begin{aligned}
e+12.5+(-1-4) \times 3.5+4 & >0 \\
e+12.5+(-3-6) \times 3.5+18 & >0 \\
e+12.5+(-2-5) \times 3.5+10 & >0 \\
e & >0
\end{aligned}
$$

giving $1<e<2$. Choose, for example, $e=1.5$. Then,

$$
M_{1}=\left[\begin{array}{cc}
1 & 3.5 \\
3.5 & 14
\end{array}\right]
$$

- Step 6 Convert M_{1} to each canonical coordinate system using

$$
M_{j+1}=T_{j}^{T} M_{1} T_{j}, \quad j=1, \ldots, N-1 .
$$

Then, convert model $\left(A_{i}, b_{i}\right)$ to its canonical representation

$$
\begin{gathered}
\widetilde{A}_{i}=C_{i} A_{i} C_{i}^{-1}, \quad \widetilde{b}_{i}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]^{T}, \\
i=1, \ldots, N
\end{gathered}
$$

and use (18) to construct the feedback gains k_{i}.

$$
\begin{gathered}
M_{2}=\left[\begin{array}{cc}
8 & 0.5 \\
0.5 & 2
\end{array}\right], \quad M_{3}=\left[\begin{array}{cc}
16 & 1 \\
1 & 4
\end{array}\right], \\
M_{4}=\left[\begin{array}{cc}
2 & 0.5 \\
0.5 & 8
\end{array}\right] . \\
\widetilde{A}_{1}=\left[\begin{array}{ll}
0 & 1 \\
2 & 1
\end{array}\right], \quad \widetilde{A}_{2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right], \\
\widetilde{A}_{3}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right], \quad \widetilde{A}_{4}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
\end{gathered}
$$

Set, for example, $\alpha=-1<0$, and hence,

$$
\begin{array}{cl}
k_{1}=\left[\begin{array}{ll}
-3 & -\frac{37}{7}
\end{array}\right], & k_{2}=\left[\begin{array}{ll}
-2 & -22
\end{array}\right], \\
k_{3}=\left[\begin{array}{ll}
0 & -21
\end{array}\right], & k_{4}=\left[\begin{array}{ll}
-2 & -20
\end{array}\right] .
\end{array}
$$

- Step 7 Revert to the original coordinate x, where the controls are

$$
K_{i}=k_{i} C_{i}, \quad i=1, \ldots, N .
$$

The common quadratic Lyapunov function for all closed loop switching models is then

$$
M=C_{1}^{T} M_{1} C_{1} .
$$

Hence,

$$
\begin{gathered}
K_{1}=\left[\begin{array}{ll}
-11.29 & -8.29
\end{array}\right], \\
K_{2}=\left[\begin{array}{ll}
-18 & -11.33
\end{array}\right], \\
K_{3}=\left[\begin{array}{ll}
-28 & -21
\end{array}\right], \\
K_{4}=\left[\begin{array}{ll}
28 & 22
\end{array}\right]
\end{gathered}
$$

and

$$
M_{0}=\left[\begin{array}{cc}
32 & 26.5 \\
26.5 & 22
\end{array}\right] .
$$

Clearly,

$$
\begin{gathered}
M_{0}\left(A_{i}+b_{i} K_{i}\right)+\left(A_{i}+b_{i} K_{i}\right)^{T} M_{0}<0, \\
i=1,2,3,4 .
\end{gathered}
$$

Hence, this system is quadratically stabilizeable.

5 Conclusion

The problem of finding stabilizing feedback controllers for single input single output switching systems comprising of subsystems that are second order linear time-invariant has been addressed. The problem relies on finding a common Lyapunov function (CLF) for all subsystems. A method has been presented by which the existence of a CLF that is shared by all subsystems, given appropriate control parameters, could be determined. Using appropriate transformations to and from the Brunovsky form, the required control parameters can then be identified.

References:

[1] Z. Sun and S.S. Ge, Analysis and synthesis of switched linear control systems, Automatica 41, 2005, pp. 181-195.
[2] G. Davrazos and N.T. Koussoulas, A review of stability results for switched and hybrid systems, Proc. 9th Mediterranean Conf. Control and $A u$ tomation, Dubrovnik, Croatia, 2001.
[3] K.S. Narendra and J. Balakrishnan, A common Lyapunov function for stable LTI systems with commuting A-matrices, IEEE Trans. Automatic Control 39, 1994, pp. 2469-2471.
[4] T. Ooba and Y. Funahashi, Two conditions concerning common QLFs for linear systems, IEEE Trans. Automatic Control 42, 1997, pp. 719721.
[5] J.L. Mancilla-Aguilar, A condition for the stability of switched nonlinear systems, IEEE Trans. Automatic Control 45, 2000, pp. 20772079.
[6] V.F. Montagner, V.J.S Leite, R.C.L.F. Oliveira and P.L.D. Peres, State feedback control of switched linear systems: An LMI approach, J. Computational and Applied Mathematics 194, 2006, pp. 192-206.
[7] P. Brunovsky, A classification of linear controllable systems, Kybernetika 3, 1970, pp. 173187.

