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Abstract:- The theory of input-output feedback linearization is extensively used for the control of 
nonlinear systems. In this paper, this theory is developed of the mathematical view point, and then, 
applied for the regulation of the torque and the flux of the induction machine. The results of 
simulations testify the hardiness of the method developed.  
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1 Introduction 
The development of different methods of 
induction motor’s control is justified by the 
need to take into account its nonlinear state 
structure. It is for this reason that, in spite 
of its weakest cost and its least clutter, the 
industry had preferred until the 80 to use 
de motors, and after, the synchronous 
motor for their linear structure that 
facilitated the control. A method of control 
of the induction motor, called rotor-flux-
oriented that reduces the nonlinear 
dynamics of the induction motor to a linear 
structure has been proposed in 1972,  [1], 
[2]. If this method remained little exploited 
until the beginning of the years 80, the 
progress in the power semiconductors 
technique’s and in the micro-electronics 
permitted its use in the present industrial 
variators. However, the experience showed 
the weakness of this method facing the 
parameter’s uncertainties, that they are 
measured, such as the motor’s speed or 
that they vary under working, as the 
resistances of the stator and the rotor. 
Otherwise, the electric motor control was 
revealed to be a field of the methodologies 
of the nonlinear control, developed since 
the years 70. Indeed, the modeling of the 
ac motors is well mastered, to be nonlinear 
models characterized by a limited number  

 
of state variables. So, several techniques 
has been developed for the induction 
machine’s control [3]. Our contribution is 
focused in this context. In the first section, 
a modelisation of the induction machine is 
presented; the second section is dedicated, 
after a short exposition of linearization 
techniques to the application to the 
induction motor. Simulations perfectly 
illustrate the relevance of the control 
developed. 
An industrial applications of feedback 
application can be seen at [9] and [10]. 
 
2 Modelisation of the induction 
machine [4], [5], [6] 
 
In this section we present briefly, and in 
non exhaustive way a mathematical model 
of the induction machine. This model, 
fluently used to synthesis a control law is 
defined in a referential rotating frame 
(indication (d,q)). This referential frame is 
defined from the natual referential three 
phase frame of the induction machine with 
the help of adapted mathematical 
transformation. 
 
Principle: 
The dynamics of the stator current and 
rotor defined in a referential rotating flux 
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defined in a referential rotating frame 
(d,q), are given by: 
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Where the vector x regroup the stator 
currents and the rotor fluxes and u 
represent the applied voltages to the motor 
expressed in the reference frame (d,q). 
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 the elements aij and bi are given by: 
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(5) 
where 

sR , sL  : resistance et inductance stator, 

rR , rL  : resistance et inductance rotor, 

mL  : mutual inductance between stator 
and rotor, 

tR  : total resistance brought back to the 
rotor, 
σ  : total leakage coefficient, 

rT  : rotor time constant, 

ω  : rotor angular frequency, 
 
The associated mechanical equations are 
given by : 

)qr.dsidr.qsi.(
Lr
Lm.pemC ϕ−ϕ=      (6.1) 
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emC  : electromagnetic torque of the 
machine, 

rC  : load torque, 
Ω  : mechanical speed of the rotor 

p/ω=Ω  
J : moment of inertia  
f : damping constant, 
p : number of motors's pole 
 
The parameters to be regulated are the 
rotor flux  Φ and the electromagnetic 
torque   that are given by: emC
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3 Feedback linearization principle 
[7], [8] 
 
Let a SISO system of order n, described by 
the nonlinear state representation:  

u).x(g)x(f
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)x(hy =                            (10) 
where the functions f, g and h are analytic 
 
Definition  
Let  the directional derivation of  h 
according to the vector field f. 
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The system is said of relative degree r at 
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Proceedings of the 7th WSEAS International Conference on Systems Theory and Scientific Computation, Athens, Greece, August 24-26, 2007      85



The computation of the output derivative 
drives to: 

)x(hk
fL)t()k(y   1rk0 =−≤≤∀       (14) 

u).x(h1r
fLgL)x(hr

fL)t()r(y −+=     (15) 
and while putting: 
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where the variable represent an external 
excitation, one gets .  )t(v)t()r(y =

Let a reference to the trajectory, the 
ulterior choice, 
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Leads to the dynamics 
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on the tracking error . If the dyye −= iα  
are the coefficients of a Hurwitz 
polynomial, the convergence to zero of the 
tracking error is guaranteed. Knowing that 
for r<n, the feedback conceived makes 
unobservable a part of the dynamics, it is 
necessary to verify the stability of the 
intern evolution corresponding to a 
reference trajectory [7]. Which is a 
difficult problem for which it doesn't exist 
a general solution, the study must be made 
case by case. 
These very simple reviews can be 
generalized to MIMO systems, [7]. In 
conclusion, this strategy of command make 
the system to look like a chains of a 
decoupled integrators, followed by a pole 
placement. 
 
4 Application to the induction 
motor 
 
While applying the analogous procedure, it 
is easy to verify that, the controls appear 

for the first time in and , one gets 
thus : 
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That is to say an expression of the forme : 
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where the vector )x(α  is given by: 
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In the same manner, the matrix   is 
given by: 
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One immediately verifies that in steady 
state, the matrix )x(β  called matrix of 

decouplage is invertible,  
and the vectorial reltive degree of the 
system is equal to (2,1), second derivative 
of , first derivative of . It is therefore 
possible to linearize the system by the 
introduction of the control 

),2
4x2

3x()det( +=β

1y 2y
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Therefore, the system looks like a double 
integrator  between  et , and et un 
simple intégrateur between and  . 

1y 1v

2 2y v
 
Poles placement 
The computation of the control v according 
to the reference trajectory 

[ ]Td2yd1ydy = .is done by drawing the 
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relation (17), in the previous expression, 
one gets: 
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The dynamics of the error is given by: 
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The error is asymptotically stable if the 
polynomial  

12p.112p α+α+                 (29) 
is a Hurwitz polynomial. Besides, the 
coefficients  are chosen according to 
specifications of the desired output. 
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derivative of  1y

121
.
e.11d1

..
y1

..
y α−α−=           (30) 

In the same way, let 
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The dynamics of the error is given by: 
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The error is asymptotically stable if 02α . 
From the equation  (31) and (32), one 
computes the first derivative of . 2y
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For a second order system, the 
characteristic polynomial is given by: 

2
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The settling time at 2 % and the damping 
factor are given by: 

n.
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Therefore, if one fixes in advance the 
settling time and the damping factor, one 
can determine the parameters  and ξ nω  
which are given by: 
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While equalizing polynomials  (29) and 
(34), one gets 

n..211 ωξ=α  ,          (37) 2
n12 ω=α

In the same way, for a first order system, 
the settling time at 2 % is given by  

T912.32tr ×= , where T  is the time 
constant. From the equation (32), the time 
constant is given by : 

912.3
2tr

2
1T =
α

=                 (38) 

therefore 

2tr
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Finally, knowing the three wanted 
parameters which are the settling time , 

and the damping factor D, one can 
determine the coefficients ,  and 

1tr
2tr

11α 12α
2α by using formulas (36), (37) et (39). 

 
5 Simulations  
The simulation has been made o a time 
interval of 10 secondes bwhile using the 
MATLAB software. 
 (N.B) a value without unit refers to the 
international system. 
The real parameters of the machine are 
given by: 

Ω= m52sR , Ω= m70rR ,  Ω= m31mL
mH7.31sL = , mH3.32rL = , . 2p =

2m.Kg.41.0J = , N.5.0f = , . m.N.1.0rC =

The initial conditions are given by: 
1.0)0(dsi = , 2.0)0(qsi −= , 3.0)0(dr =ϕ , 

4.0)0(qr −=ϕ , 2.0)0( =Ω . 
The steady state desired parameters are: 

Wb1ref =φ ,  m.N.10emrefC =

And the settling time imposed are 
s42rt1rt == , the damping factor D=20 %. 

After calculation, one finds that 
1932.2n =ω , 4559.0=ξ , , 8102.411=α 212 =α , 

75.02 =α . 
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Fig. 1: flux ( __ ), reference flux ( ...) 

 
Fig.  2: torque ( __ ), reference torque ( ...) 

 
Fig.  3: voltage  vs  qsu dsu

 
Fig.  4: voltage (__ ), voltage ( ..) dsu qsu

 
Fig.  5: current ( __ ), current ( ..) dsi qsi

 
Fig.  6: flux drϕ ( __ ), flux  ( ..) qrϕ

 
Fig.  7: voltage ( __ ), current ( ..) dsu dsi

 
Fig.  8: voltage ( __ ), 10*flux ( ..) dsu drϕ
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Fig.  9: speed Ω 

The voltages  and   are sinusoidal 
and in quadrature. 

dsu qsu
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with 2
qsu2

dsuma += ,  is the frequency 

of the signal, one measures  and 
. The voltages applied to our 

motor are given by: 
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The stator currents are also sinusoidal and 
in quadrature with the same frequency that 
the voltages 
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The rotor fluxes are sinusoidals, and in 
quadrature with the same frequency that 
the voltages 
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In steady state, the speed Ω is given by the 
relation  
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6 Interpretation 
Figures  1 and 2 shows the well perfect 
follow-up of the flux and the torque toward 
their wanted values that means 

, . the figure 3 

represents the  voltage versus 
voltage, after the transient response, the 
two voltages describe a circle that proves 
that they are in quadrature of π/2 and of 
amplitude 57.74, the following figures 
represent the different signals of our 
machine and the phase angle between 
them, the figure 9 represents the 
mechanical speed which is equal in steady 
state to 19.8. 

1)2
qr

2
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Conclusion 
 
In this steady, one developed a method of 
nonlinear control known an decoupled 
control by feedback linearization. This 
method has been applied with success to 
control the torque  and the flux of an 
induction motor that is extensively used in 
industry. Results of the simulation testify 
the hardiness of the method. An extension 
of this work is considered in order to apply 
this method of decouplage to other type of 
motors. 
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