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Abstract: - Model reference adaptive control is applied to linear time varying systems and to nonlinear systems 

amenable to virtual linearization. Asymptotic stability is guaranteed even if the perfect model following 

conditions do not hold, provided that some sufficient conditions are satisfied. Simulations show the scheme to 

be capable of effectively   controlling certain nonlinear systems. 
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1 Introduction 
The simple adaptive control approach to direct 

MRAC of multi-input multi-output plants was first 

proposed by Sobel, Kaufman and Mabius [1], This 

approach uses a control structure which is a linear 

combination of feedforward of the model states and 

inputs and feedback of the error between plant and 

model outputs. This class of algorithms requires 

neither full state access nor satisfaction of the 

perfect model following conditions. Asymptotic 

stability is ensured provided that the plant is almost 

strictly positive real (ASPR): that is, for a plant 

represented by (A, B, C) there exists a feedback 

gain matrix eK
~

 (not needed for implementation) 

such that B1)CeK
~

BAsI(C)s(Z −+−= is strictly 

positive real. BarKana [2] extended the original 

algorithm (which required the plant to satisfy the 

ASPR condition ), to a class of plants which 

violates this condition. This approach involved 

designing a supplementary feedforward filter  to be 

included in parallel with the original plant resulting 

in a new  augmented plant which had to satisfy the 

same strictly positive real condition, unfortunately, 

the tracking error was not the true difference 

between the plant and the model outputs since it 

included the contribution of the  supplementary 

feedforward filter. Thus, the approach was 

susceptible to a steady state error. Neat et al [3] 

suggested the incorporation of the feedforward 

filter of BarKana  

 

[2] into the reference model's output as well as the 

plant's output in a manner so as to yield asymptotic 

tracking. Barkana [4],[5] gives more studies  about 

the ASPR condition and the convergence of the 

adaptive gains.  

This paper gives a new algorithm in order to 

overcome the ASPR condition for a class of 

systems. We design a direct adaptive controller that 

is indeed robust with respect to significant  

parameter uncertainty and unmodeled dynamics. 

 
In this paper the command generator tracker (CGT) 

concept [l] has been proven to be a very useful tool 

in the development of model reference adaptive 

control (MRAC) algorithms [2].  

In this paper, the time varying CGT concept [3] is 

developed, thus allowing the application of MRAC 

to linear time varying systems and to nonlinear 

systems which can be operated upon using virtual 

linearization. 

 

2 CGT Concept  for time varying 

systems [7] 
The linear varying  system can be described by the 

following equations :   
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  (t)u (t)B (t)x (t)A  (t)x
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where )t(x p is the )1n( × state vector, )t(u p  is 

the )1m( × control vector, )t(y p is the )1q( ×  

plant output vector, and pA , pB  are matrices with 

appropriate dimensions. 
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The linear invariant model to be followed is 

described by :  
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where )t(xm is the )1n( m × state vector, )t(um  is 

the )1m( m × control vector, )t(ym is the )1q( ×  

plant output vector, and mA , mB  are matrices with 

appropriate dimensions. 

If the perfect model following is achieved, that 

means  (t)y(t)y mp =  for    0t t ≥ ,            then the 

resulting  trajectories of control and the state are 

noted respectively  (t)u
*

p and )t(x
*

p and by  

definition, the ideal variables must satisfy : 
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Where the )t(S ij matrices are appropriately 

dimensioned time varying matrices. 

Provided that 0u
.

m = , the )t(S ij  matrices will 

have to satisfy the following set of equations [5] : 

             

m111121p11p (t)A S(t)S(t) S(t)B  (t) S(t)A +=+ �  (6)              

m111222p12p (t)B S(t)S(t) S(t)B  (t) S(t)A +=+ �  (7)              

                              m11p C(t)SC =                       (8)                                                                                          

                              0(t)SC 12p =                          (9)                                                                                            

 

The equations  (6) – (9) can be writen as : 
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One suppose that q=m , then if the matrix  
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is invertible,  equation (10) gives : 
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where 
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Using equation (11), the differential system to be 

solved is given by : 

 

m12m1111111111 (t)CΩ- (t)A S(t)Ω - (t) S=(t)S (t)Ω �    

(13)        

 (t)B S(t)Ω - (t) S=(t)S (t)Ω m1111121211
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m22m1121112121 (t)CΩ(t)A S(t)Ω  (t)S (t)=(t)S ++�Ω
 (15)                           

m1121122122 (t)B S(t)Ω  (t)S (t)=(t)S +�Ω       (16)                  

              

  We see that equation    (t)S21  and (t)  S22  

depend of   (t)S11 and (t)  S12  by using (15) and  

(16), then,  just equations (13) and (14) must be 

solved.  

 

3 MRAC Algorithm 
The MRAC problem will be solved for the 

following process equations : 
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The objective is to find a control )t(u  such that 

the plant out put )t(y p  follows the output )t(ym  

of the reference model :   
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To facilitate the development of the control law, the 

time varying CGT concept is presented here. 

The control law is chosen of the form  

 

)t(u)t(K            

)t(x)t(K))t(y)t(y)(t(K)t(u
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or                    
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 r.Ku =                         (20) 

 

Where:   )K,K,K(K uxe=  and   

)u,x,)yy((r
T

m

T

m

T

m

T
−= .  

)t(K  is generated according to the following 

adaptive rule : 
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T
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with the error defined as :  

)t(x)t(x)t(e
*
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The error dynamics will be :  

)t(x)t(x)t(e
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Using eqs. (l7), ( 4 ), ( 5) and (21) we obtain : 
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4  Stability Analysis [6]. 
Stability will be analyzed using a Lyapunov 

approach. Let the Lyapunov function be : 
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TR : trace of the matrix 

T  and )t(P  are respectively constant and time 

varying positive definite symmetric matrices, S  is 

a non-singular matrix and K
~
is partitioned in the 

same manner as K , i.e. 
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~
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~
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and is assumed to be such that : 
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With )t(T1  a time varying matrix. 

After some algebraic manipulations, the time 

derivative of V  becomes : 
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This expression arises if the output matrix satisfies  
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And if some )t(K
~ '

x  , )t(K
~ '

u   are chosen so that : 
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This derivative will be negative definite in e  if : 
 

1. T  is positive definite 

2. T is positive semi definite 
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is negative definite for some )t(K
~ '

e  not needed 

form implementation. 

Note that  the matrices )t(K
~ '

x , )t(K
~ '

u , )t(K
~ '

e , 

)t(P , as well as the )t(S ij  matrices are not 

needed for the implementation of the control   law. 

 

5 Treatment of nonlinear systems 
The class of nonlinear systems which can be 

operated upon using the virtual linearization 

procedure can be controlled via the MRAC scheme 

of section 3. The procedure is best explained 

through an example: 

Let   

2,1i),t,u,x(P)t,u,x(h)t,u,x(g)t(x iii

.

=++=
(32)      

And write 
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.
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Then the linearized system will be : 
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Note that this way of   rewriting the system does 

nothing but rearrange the terms in each equation so 

that when x  and u  are specified, the systems 

appears to be linear. 

 

6 Illustrative Examples  

 
Example 1 : MRAC for a linear system 

 
Let a SISO system of transfer function  

2s3s
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Its  representation in state form is given by : 

)t(xC)t(y

)t(uB)t(xA)t(x

ppp

ppppp

.

=

+=
 

where 









=

3     2   

1      0   
Ap , 








=

1

0
B p , [ ]4   8C p =  

The transfer function of the model is given by  

1s2.0

1
)s(Gm +
=  

That means 

)t(xC)t(y

)t(uB)t(xA)t(x

mmm

mmmmm

.

=

+=
 

 

where           [ ]5Am −= , [ ]5Bm = , [ ]1Cm =  

 

The input to the model is a wave signal of 

amplitude ±1 and  a period of 60 secs 

The application of the MRAC using the CGT 

concept leads to a asymptoticaly  stabe error. 

Fig. 1  gives the outputs of the system and the 

model which we can see the good following at 

steady state, the control signal is given in Fig. 2 

which we see that it have an acceptable values 

 

 
Fig. 1 – Outputs of the system and the model 

 

 
Fig. 2 – command signal 

 

Example 2 Nonlinear Third Order system 
The equations for the plant are : 
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The model equations are : 
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The simulation was carried out for the initial 

conditions :  

x (0) = xm (0) =[0 0 0]
T
 , T = T =I5, 0)0(K I =   

and a step size  01.0t =∆ . 
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  The simulation results shown in Fig 3 indicates 

that the plant output does   following 

asymptotically the model output.  

Fig. 4 shows the command signal which is bounded 

and smooth. 

 

 
Fig. 3 – Outputs of the system and the model 

 
Fig. 4 – command signal 

 

7 Conclusion  
In this paper, One presents at first the concept of 

CGT for nonlinear systems then, an extension of 

adaptive MRAC to nonlinear systems was 

developed by using the procedure of virtual 

linearization, a simulation on a third order 

nonlinear system was tested, leading to an error 

asymptotically stable between the system and the 

reference model . This study will make it possible 

the MRAC to be applied to the nonlinear systems 

and even with the systems strong  linearties which 

is the case of the majority of the industrial systems. 
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