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Abstract: In this paper we using a new version of compression-expansion fixed point theorems of Krasnoleskii’s
type for Mönch operators, we establish conditions which ensure the existence of positive solutions of Urysohn
integral equations.
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1 Introduction
In analyzing nonlinear phenomena many mathemati-
cal models arise to problems for which only nonnega-
tive solutions make sense. Therefore, attention of the
researchers is capture by the studies of existence of
positive solutions of nonlinear equations and the main
tools to do this are the compression-expansion fixed
point theorems of Krasnoselskii’s type. We remind
here this result

Theorem 1 Let X be a Banach space, endowed with
the norm |·|, K be a cone in X , U1, U2 be open sub-
sets of X with 0X ∈ U1, U1 ⊂ U2. Assume that
T : K ∩

(
U2\U1

)
→ K is a completely continuous

operator such that either{
|T (u)| ≤ |u| on K ∩ ∂U1

|T (u)| ≥ |u| on K ∩ ∂U2

(1)

or {
|T (u)| ≥ |u| on K ∩ ∂U1

|T (u)| ≤ |u| on K ∩ ∂U2.
(2)

Then T has at least one fixed point in K ∩
(
U2\U1

)
.

This technique has been applied in the literature to
scalar equations, when X = IR, see [6, 8, 9], and re-
cently to nonlinear equations in Banach spaces, see
[3, 12, 4]. In all this works, the nonlinear integral
equations were studied assuming that the associated
operator is compact ar completely continuous. Our
existence result do not require completely continuity

of T and are based upon the continuation theorem of
Mönch [10] and the corresponding compression theo-
rem.

The aim of this paper is to establish conditions
which guarantee the existence of positive solutions of
abstract nonlinear integral equation

u (t) =
h∫

0

G (t, s, u (s)) ds, t ∈ [0, h] ,

where the value of G is an element of a Banach space.
The main tool in our proof is a new version of com-
pression fixed point theorem of Krasnoselskii’s type

Theorem 2 Let X be a Banach space, endowed with
the norm |·|, K be a cone in X . Assume that the norm
|·| is increasing with respect to K, 0 < r < R and
T : K ∩

(
ΩR\Ωr

)
→ K is a Mönch operator such

that {
|T (u)| ≤ |u| on K ∩ ∂ΩR

|T (u)| ≥ |u| on K ∩ ∂Ωr

(3)

Then T has at least one fixed point in K ∩
(
ΩR\Ωr

)
.

The proof of this result may be found in [5].
In that follows we present some background re-

sults.

1.1 Ordered Banach spaces
Let X be a linear space. By a cone K of X we un-
derstand a convex subset of X such that λK ⊂ K for
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all λ ≥ 0 and K ∩ (−K) = {0X}, where 0X is zero
element of X .

There is a one-to-one correspondence between
the cones ofX and the order relations onX which are
compatible with linear structure ofX . More precisely,
any cone K in X induces a partial order structure on
X , i.e.

x ≤ y if and only if y − x ∈ K.

A linear space endowed with a cone is called an
ordered linear space, so an ordered Banach space is
a Banach space with a closed cone. For an ordered
Banach space, we say that the norm |·| is increasing
with respect to K if |x| ≤ |y| whenever 0 ≤ x ≤ y.

Let C (0, h;X) be the Banach space of all contin-
uous functions from [0, h] onto X with the supremum
norm |·|∞ defined by

|u|∞ = sup
t∈[0,h]

|u (t)| .

Notice C (0, h;K) is a cone of C (0, h;X) and if the
norm of X is increasing with respect to K, then so is
the norm |·|∞ with respect to C (0, h;K).

Basic facts about ordered Banach spaces can be
found in [2, 11].

1.2 Operators of Mönch type
Let X be a Banach space, endowed with the norm |·|,
K ⊂ X be a closed subset of X and U ⊂ K be an
open subset ofK. The operator T : U → K is Mönch
operator whit respect to x0 ∈ U if T is continuous
and for some C ⊂ U we have

C ⊂ cv ({x0} ∪ T (C)) implies C compact.

Here, by cv (M) we denote the convex, linear en-
closer of the set M .

In that follow for M ⊂ U a bounded set, we de-
note by α (M) the Kuratowski measure of noncom-
pactness on Xand for r > 0 we consider

Ωr = {x ∈ X; |x| < r} .

Example 1 Let X be a Banach space, endowed with
the norm |·|, R > 0, D = ΩR × ΩR and u, v ∈ ΩR.
We consider the continuous map f : D → X with

f (u, y) = v, y ∈ ΩR.

and the operator T : D → X ×X , defined by

T (x, y) = (u, f (x, y)) , (x, y) ∈ D.

Then T is Mönch operator with respect to (u, v).

Indeed, let C ⊂ cv ({(u, v)} ∪ T (C)). Since
(x, y) ∈ C, there exists λ ∈ [0, 1] and (x◦, y◦) ∈ C
such that

(x, y) = (1− λ) (u, v) + λT (x◦, y◦)
= (1− λ) (u, v) + λ (u, f (x◦, y◦)) .

Then x = x◦ = u and

y = (1− λ) v + λf (u, y◦) = v.

Therefore C = {(u, v)} is a compact set. So, T is
Mönch operator. ut

Interest for the operators of Mönch type is given by
the fixed point result due to Mönch [10] and the con-
tinuation analogue to this one.

Theorem 3 (Mönch’s fixed point theorem) Let X be
a Banach space, U be a nonempty, closed, convex sub-
set of X and T : U → U a continuous map satisfying

C ⊂ U,C = cv ({x0} ∪ T (C))⇒ C compact .

for some x0 ∈ U . Then T has a fixed point.

This result contains, as particular cases, the fixed point
theorems of Krasnoselskii, Darbo and Sadovskii for
self-maps of closed bounded and convex set. Other
details and applications of Theorem 3 can be found in
[1, 2, 11, 13].

2 Positive Solutions of Urysohn Inte-
gral Equations

Let X be a ordered Banach space, with respect to the
cone K ⊂ X and X are endowed with the increasing
norm |·|.

In this paragraph we will apply Theorem 2 to es-
tablish some hypothesis which guarantee the existence
of positive solutions of the Urysohn nonlinear integral
equation

u (t) =
h∫

0

G (t, s, u (s)) ds, t ∈ [0, h] , (4)

where G : [0, h]× [0, h]× ΩR → X .
By positive solution of (4) we mean a function

u ∈ C (0, h;K) satisfying (4).
This part of the paper is inspired by [13],

where using Theorem 3, authors studies Volterra and
Urysohn integral equations. In order to establish at
least one positive solution of (4) we introduce the fol-
lowing conditions:
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(U1) for any t ∈ [0, h], the map Gt = G (t, ·, ·) is
L1-Carathéodory and

sup
t∈[0,h]

h∫
0

sup
|x|<R

|Gt (s, x)| ds <∞;

(U2) lim
t→t∗

h∫
0

sup
|x|<R

|Gt (s, x)−Gt∗ (s, x)| ds = 0;

(U3) there exists ω : [0, h] × [0, h] × [0, 2R] → IR
such that for each t ∈ [0, h] the map ωt is L1-
Carathéodory,

α (G (t, s,M)) ≤ ω (t, s, α (M))

for a.e s ∈ [0, h], M ⊂ U , and the unique map
φ ∈ C (0, h; [0, 2R]) satisfying

φ (t) ≤ 2
h∫

0

ω (t, s, φ (s)) ds, t ∈ [0, h]

is φ ≡ 0;

(U4) there exist µ ∈ (0, 1) and [a, b] ⊂ [0, 1] such
that for any t ∈ [0, h], t′ ∈ [a, b]

µG (t, s, x) ≤ G
(
t′, s, x

)
for a.e s ∈ [0, h] and for each x ∈ U ;

(U5) there is Ξ : K → K such that

Ξ (x) ≤ G (t, s, u (s)) , s ∈ [a, b] , t ∈ [0, h]

for any u ∈ C (0, h;K) and x ∈ K with x <
u (s), s ∈ [a, b];

(U6) there is Φ : K → K with

Φ (x) ≤ Φ (y) whenever x ≤ y

and

|G (t, s, x)| ≤ |Φ (x)| , t, s ∈ [0, h] , x ∈ U ;

(U7) there exists 0 < r < R such that

inf
x∈K
|x|=µr

|Ξ (x)| ≥ r

b− a
,

sup
x∈C(0,h;K)
|x|∞=R

h∫
0

|Φ (x)| ≤ R.

Theorem 4 If (U1) – (U7) are satisfied, then (4) has
at least one solution u ∈ C (0, h;K) such that

r ≤ |u|∞ ≤ R (5)

and

µu (t) ≤ u
(
t′
)

for t ∈ [0, h] and t′ ∈ [a, b] . (6)

Proof: We will apply Theorem 2 for the Banach space
X = C (0, h;X), the cone

K = {u ∈ C (0, h;K) ; µu (t) ≤ u (t′) ,
t ∈ [0, h] , t′ ∈ [a, b]}

and the operator T : Kr,R → K defined by

T (u) (t) =
h∫

0

G (t, s, u (s)) ds, t ∈ [0, h] ,

where

Kr,R = {u ∈ K; r ≤ |u|∞ ≤ R} = K ∩
(
ΩR\Ωr

)
.

Let t ∈ [0, h] and t′ ∈ [a, b]. By (U4) we have

µTu (t) = µ

h∫
0

G (t, s, u (s)) ds (7)

=
h∫

0

µG (t, s, u (s)) ds

≤
h∫

0

G
(
t′, s, u (s)

)
ds

= Tu
(
t′
)
.

Therefore Tu ∈ K. So, T is well defined. Following
the line from [13], it can be proof that (U1) – (U3)
ensure that T is Mönch operator.

Let u ∈ K ∩ ∂Ωr, i.e. u ∈ C (0, h;K), |u|∞ = r
and µu (t) ≤ u (t′) for all t ∈ [0, h], t′ ∈ [a, b]. We
consider t∗ ∈ [0, h] and we assume that µu (t∗) ≤
u (t′) for each t′ ∈ [a, b]. By (U5) results

Ξ (µu (t∗)) ≤ G (t, s, u (s)) ds, s ∈ [a, b] .

We have

Tu (t) =
∫ h

0
G (t, s, u (s)) ds

≥
∫ b

a
G (t, s, u (s)) ds

≥
∫ b

a
Ξ (µu (t∗)) ds

= (b− a) Ξ (µu (t∗)) .
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Then
|Tu (t)| ≥ (b− a) · inf

x∈K
|x|=µr

Ξ (x) .

Now, using the first inequality from (U7), results
|Tu|∞ ≥ r = |u|∞. Hence the first condition from
(3) is satisfy.

Let u ∈ K ∩ ∂ΩR, i.e. u ∈ C (0, h;K) with
|u|∞ = R. We have

|Tu (t)| =

∣∣∣∣∣
∫ h

0
G (t, s, u (s)) ds

∣∣∣∣∣
≤

∫ h

0
|G (t, s, u (s))| ds

≤
∫ h

0
|Φ (u (s))| ds.

By second inequality of (U7), we obtain

|Tu|∞ ≤ sup
x∈C(0,h;K)
|x|∞=R

h∫
0

|Φ (x)| ≤ R = |u|∞ .

Hence the second condition from (3) is verify. Thus
Theorem 2 applies. ut

3 Conclusion
Theorem 4 ensure the existence of positive solutions
of (4) and, moreover, it offers the localization of this
solutions, i.e. (5) implies that solutions of (4) are lie
in the shell Kr,R and (6) gives an essential properties
of this solutions. This informations can be very useful
in numerical approach to solving integral equations.
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