
Parallel sorting on ILLIAC array processor
MASUMEH DAMRUDI, KAMAL JADIDY AVAL

Computer Science
Islamic Azad University of Firuzkuh

Firuzkuh
IRAN

m.damroudi@yahoo.com, k.jadidy@yahoo.com

Abstract: Nowadays, we need to speed up solving computer problems such as sorting. Because of limitations
in processor's speed, using parallel algorithms is inevitable. In parallel algorithms, because of cost limitations
and architecture complexity, it's not suitable to increase the number of processors to speed up. This is also
infeasible where we have plenty of data. In this paper we issue a new sorting algorithm. The algorithm is
implemented on ILLIAC architecture. The aim of issued algorithm is to reduce total cost of sorting with a
trade off between the number of processors and execution time.

Key-Words: Parallel algorithm, Sorting, Array processors, SIMD, ILLIAC, NSI.

1 Introduction
Sorting algorithms are very important in computer
science. Using parallel architectures, parallel sorting
algorithms are more important due to processors'
connectivity. Sorting algorithms are basic part of
sequential and parallel computations; they also have
great usage in database engines. Such algorithms are
studied for many years.

Donald Knuth has reported that computer
manufacturers of the 1960s estimated that more than
25 percent of the running time on their computers
was spend on sorting, when all their customers
where taken into account[1]. There are many
computational tasks which about half of them are
sorting tasks.

Many parallel sorting algorithms are proposed
recently with low execution time on complicated
networks. They have great cost using many
interconnected processors. These algorithms aren't
efficient on huge amount of data. Some of these
algorithms are overviewed as following:
Suel issued a sorting algorithm based on shuffle
network. The algorithm is named shuffle sorting
algorithm and has a cost of)loglog/(log2 nnΩ ,
where n is the number of data elements [2].

In Bitonic algorithm, in addition to complexity of
computation, we should be aware of connectivities'
complexity. The order of this algorithm is
()n2logΟ [3]. Because of great connectivities and

its growth by increasing data, this algorithm is not
suitable for great data. The lower bound of sorting
networks and shellsort algorithm is

))log/(loglog(22 nnnΩ [4, 5]. Shellsort is one of
sequential algorithms which is used in low depth

networks. Although the structure of shellsort based
algorithms is simple, analyzing the execution of
these algorithms is difficult.
 Quicksort algorithm's complexity is ()nn logΟ
[6]. Kider proposed a sorting algorithm on heap tree
where the worst running time is ()nn logΟ .
Batcher's Bitonic and Odd-Even merge sorts' cost
order is ()n2logΟ [7]. A recent implementation of
this algorithm is done in 2005 [8].

A parallel sorting algorithm that merges k sorted
lists on CREW PRAM model has a cost
of ()PkNN loglog +Ο . P and N are respectively
number of processors and total entrance time of
lists. Sen and Scherson show an improvement on
SIMD mesh with ()NΟ steps which is called

shearsort [9]. In 2004 a nn × mesh containing n
data with ()1log +nn sorting time was proposed
by Allen and Wilkinson [10]. A new architecture
named Multi-Mesh of Trees (MMT) is invented
recently. This architecture is a combination of multi
mesh and mesh of trees. This architecture uses 4n
processors. Just one algorithm is issued on this
architecture which is named Esort [11]. The
algorithm's complexity is ()nlogΟ .

We're always searching for such an algorithm
that doesn't have problems like: comprehension
complexity, great amount of processors and
impossibility of data elements increment using fixed
number of processors.
Issuing a new algorithm on a simple architecture
with a trade off between number of processors and
execution time is the main aim of this paper.

Proceedings of the 7th WSEAS International Conference on Systems Theory and Scientific Computation, Athens, Greece, August 24-26, 2007 260

2 ILLIAC topology
This topology was introduced by Unger in 1958. In
this topology each processor has direct connectivity
with four processors like mesh. In ILLIAC each
processor has connectivity with next and previous
processor and also with a processor in a distance of

N next and N previous. N shows number of
processors. An instance of this topology is shown in
Fig. 1. Maximum distance between two processors
is N and the number of processors should be
power of two.

In ILLIAC, the following functions are used to
connect processors to each other.
Assuming Nm = :

(1) () NxxII mod11 +=+

(2) () NxxII mod11 −=−

(3) () NmxxII n mod+=+

(4) () NmxxII n mod−=−

Fig. 1 ILLIAC network

3 Neighborhood Algorithm
Neighborhood sorting algorithm is one of odd-even
transposition sorting algorithms. The number of
processors in them is less than the number of data
elements, so data elements are divided into
processors [12].
This algorithm is implemented on linear
architecture. Four data elements are stored in each
processor. The running procedure of this algorithm
is as following:

At each step, the processor sorts it's data
elements and passes its two greater data elements to
the next processor, resorts its data elements and
passes its two lower data to the previous processor.
The above steps are iterated until the list becomes
sorted.
Because of simplicity and the fact that SIMD
architecture runs just one operation on many data
elements, neighborhood algorithm is the base of our

sorting algorithm. ILLIAC network has more
connectivity in comparison to the Ring and Mesh
architectures.

4 NSI algorithm
Sorting algorithms which store one data element in
each processor are simple but their cost is not
suitable. There are many data elements to sort in
application programs and this number of processors
is unavailable. Assume that N is the number of
processors and n is the number of data elements.
The relation between them is Nn 4= . The number
of data elements is quadruple of processors, so each
processor needs four registers. The N last
processors should have two local memories.

As each processor has four registers, on more
data elements you can add registers or processors
into the architecture.
Executing NSI1 algorithm should follow these steps:
1.Four data elements enter each processor all at
once.
2.A primary sorting executes in each processor and
sorts the data stored in registers inside processor.
3.Each processor such as i (which i is less
than NN −) sends its two greater data elements
to Ni + and processors that are in the range of

NN − to N store two greater data elements in
their local memory. Each processor sorts its data
elements.
4.Processor Ni + sends its two smaller data
elements to processor i and processors that are in the
range of NN − to N restore two greater data
elements from their local memory into their empty
registers. Each processor sorts its data elements
again.
5.Each processor such as i sends its two greater data
elements to 1+i and processor 1−N stores two
greater data elements in its local memory. Each
processor sorts its data elements.
6. Processor 1+i sends its two smaller data elements
to processor i and processor 1−N restores two
greater data elements from its local memory into its
empty registers. Each processor sorts its data
elements again.

1 Neighborhood Sort on ILLIAC

Proceedings of the 7th WSEAS International Conference on Systems Theory and Scientific Computation, Athens, Greece, August 24-26, 2007 261

The above steps should iterate until data list
becomes sorted.

In this algorithm each data element can move
1+N in each execution. In the worst case the

algorithm should run 1−N times to sort data list.
This will cause 22 −N data exchanges between
processors. The time order of NSI sorting on
ILLIAC is ()NOtn = and the cost of processors
is ()NOpn = . The total cost will

be ()NNOCn = .

4.1 Analysis
We have described an algorithm to sort using
ILLIAC architecture. In this architecture the
maximum distance between two processors is N ,
so there are 1−N steps between the furthest
processors. The algorithm is based on step by step
passing data elements to their locations in the sorted
list.

In this architecture, the worst case is where data
elements are 1−N steps far from their location in
sorted list. In this case, executing the algorithm on
list will cause 22 −N data transpositions between
processors. At last, all of data elements are in their
proper location of sorted list.

The costs of previously issued algorithms and our
algorithm are presented in the following table for
comparison. In all cases N is the number of
processors and n is the number of data elements.
NSI is an in-place sorting algorithm and doesn't
need extra space to sort data elements. The
algorithm is issued on EREW model so there is no
need to gain access to the same memory location.

It seems that the total cost of NSI is not better
than Multiway of merge and Count algorithms.
Multiway of merge algorithm is a merge algorithm
and input lists should be sorted, so the cost of
sorting input lists should be considered too [13]. On
the other hand this algorithm is issued on CREW
model. Count algorithm is not sorting the list by
comparing data elements and just can sort integer
data elements.

As seen there are no such limitations in our
algorithm. As shown in Table 1, NSI offers a better
total cost in comparison to other algorithms.

So
rt

in
g

Execution time
O()

No. of
Processor

Total cost
 O() Description

IL
L

IA
C

N
N

2
log2

1
log2 2 N N

N

N 2
log2

1
log2 2 In 1977

R
an

k

nn log)1(−nn nn log3 -

B
ub

bl
e

nn log21 N nNn log21 -

Q
ui

ck N N 2N -

M
es

hs
or

t

nn k 1log − 2n nn k 13 log − K= length
of path

Sh
el

l

2

2

)log(log
log

n
nn n

2

22

)log(log
log

n
nn

-

Sh
uf

fle
n

n
loglog

log2

nn log
n
nn

loglog
log3

-
M

ul
tiw

ay
of

 M
er

ge

N
kn

n
log

log +
N kn

nN
log
log + on CREW

 PRAM -k
sorted lists

B
at

ch
er

's
B

ito
ni

c

n2log nn log nn 3log -

E
so

rt nlog 2n nn log2 In 2004

H
ea

p

nn log nlog nn log2 In 2004
 by Kider

C
ou

nt n nlog nn log Just integers

M
es

h

()nn log n ()nnn log
In 2004 by

Wilkinson &
 Allen

N
SI N N NN Nn 4=

Table 1 Comparison table [14, 15]

4.2 Simulation result of NSI algorithm
A result of simulating NSI algorithm is shown in
Fig. 2. We wrote a program to simulate our
algorithm. The program counts data element
transpositions between processors in the process of
sorting the list.
 This simulation sorts 1024 randomly generated
data elements using 256 processors. Number of
processors for sorting simulation can be specified
when running the program. Each processor in our
simulation program uses four registers; so number
of data elements is quadruple of processors.

Proceedings of the 7th WSEAS International Conference on Systems Theory and Scientific Computation, Athens, Greece, August 24-26, 2007 262

25

26

27

28

29

30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

C
om

pa
ri

so
n

co
un

t

Fig. 2 Results of simulation for 30 iterations

5 Conclusion
There are many sorting algorithms which use
parallel architectures. Recently issued algorithms are
implemented on new architectures like MMT to
improve execution time. MMT architecture is cost
consuming on initialization. Many processors plus
connection complexity increase its total cost too.
In this paper we issued an algorithm based on
ILLIAC architecture named NSI.

NSI algorithm is an extension of neighborhood
algorithm on ILLIAC. Neighborhood algorithm cost
on linear architecture is ()NO .

NSI algorithm sorts the list in-place. Also the use
of ILLIAC architecture causes faster sort in
comparison to neighborhood algorithm on linear
architecture. This is because of more connectivity in
ILLIAC architecture. The sorting cost of NSI
algorithm is ()NO .

References:
[1] Knuth, D.E. sorting and searching(Second Ed.),

Volum 3 of The Art of Computer Programming.
Addison-Wesley, Reading. MA, USA, 1998.

[2] Torsten Suel, M.S.C.S, Routing and Sorting on
Fixed Topologies, Presented to the Faculty of
the Graduate School of The University of Texas
at Austin December, 1994.

[3] D. Nassimi and S. Sahni, Bitonic sort on a mesh-
connected parallel computer, IEEE Trans.
Comput. C27 (1), 1979, pp. 2-7.

[4] R. E. Cypher. A lower bound on the size of
Shellsort sorting networks. SIAM J. Comput, 22,
1993, pp. 62-71.

[5] B. Poonen, The worst case in Shellsort and
related algorithms. Journal of Algorithms, 15,
1993, pp.101-124.

[6] R. S. Francis and L. J. H. Pannan. A parallel
partition for enhanced parallel quicksort.
Journal of Parallel Computing, 18, 1992,
pp.543-550.

[7] Batcher, K. E. Sorting networks and their
applications. AFIPS Spring Joint Computer
Conference, 32, 1968, pp. 307-314.

[8] Ahmed Shamsul Arefin, Mohammed Abul
Hasan, An Improvement of Bitonic Sorting for
Parallel Computing, WSEAS Transactions on
Information Science and Applications. Issue 7,
Volume 2, July 2005.

[9] I. D. Scherson and S. Sen, Parallel sorting in
two-dimensional VLSI models of computation,
IEEE Trans. Comput. 38,Feb.1989, pp.238-249.

[10] B. Wilkinson & M. Allen, Parallel
Programming Techniques & Applications
Networked Workstation & Parallel computers
2nd Ed, 2004 Pearson Education INC.

[11] Prasanta K. Jana, Multi-mesh of trees with its
parallel algorithms, Journal of Systems
Architecture 50, 2004, pp. 193-206.

[12] Park, A., and Balasubramanian, K., Reducing
Communication Costs for Sorting on Mesh-
Connected and Linearly Connected Parallel
Computers, Journal of Parallel and
Distributed Computing, 9, 1990, pp. 318-322.

[13] Z. Wen, Multiway merging in parallel,IEEE
Trans. Parallel Distrib. Comput. 7, January
1996, pp. 11-17.

[14] D.E. Muller, F.P. Preparata, Bounds of
complexities of networks for sorting and
switching, Journal of Assoc. Comput. Mech.
22, April 1975, pp.195–201.

[15] S.G. Akl, Parallel Sorting Algorithms,
Prentice-Hall, Orlando, FL, 1989.

Proceedings of the 7th WSEAS International Conference on Systems Theory and Scientific Computation, Athens, Greece, August 24-26, 2007 263

