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Abstract: Nowadays, we need to speed up solving computer problems such as sorting. Because of limitations 
in processor's speed, using parallel algorithms is inevitable. In parallel algorithms, because of cost limitations 
and architecture complexity, it's not suitable to increase the number of processors to speed up. This is also 
infeasible where we have plenty of data. In this paper we issue a new sorting algorithm. The algorithm is
implemented on ILLIAC architecture. The aim of issued algorithm is to reduce total cost of sorting with a 
trade off between the number of processors and execution time.
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1   Introduction
Sorting algorithms are very important in computer 
science. Using parallel architectures, parallel sorting
algorithms are more important due to processors' 
connectivity. Sorting algorithms are basic part of 
sequential and parallel computations; they also have 
great usage in database engines. Such algorithms are 
studied for many years. 

Donald Knuth has reported that computer 
manufacturers of the 1960s estimated that more than 
25 percent of the running time on their computers 
was spend on sorting, when all their customers 
where taken into account[1]. There are many 
computational tasks which about half of them are 
sorting tasks.

Many parallel sorting algorithms are proposed
recently with low execution time on complicated 
networks. They have great cost using many 
interconnected processors. These algorithms aren't 
efficient on huge amount of data. Some of these 
algorithms are overviewed as following:
Suel issued a sorting algorithm based on shuffle 
network. The algorithm is named shuffle sorting 
algorithm and has a cost of )loglog/(log2 nnΩ ,
where n is the number of data elements [2]. 

In Bitonic algorithm, in addition to complexity of 
computation, we should be aware of connectivities' 
complexity. The order of this algorithm is 
( )n2logΟ [3]. Because of great connectivities and 

its growth by increasing data, this algorithm is not 
suitable for great data. The lower bound of sorting
networks and shellsort algorithm is 

))log/(loglog( 22 nnnΩ [4, 5]. Shellsort is one of 
sequential algorithms which is used in low depth

networks. Although the structure of shellsort based 
algorithms is simple, analyzing the execution of 
these algorithms is difficult.
     Quicksort algorithm's complexity is ( )nn logΟ
[6]. Kider proposed a sorting algorithm on heap tree 
where the worst running time is ( )nn logΟ . 
Batcher's Bitonic and Odd-Even merge sorts' cost 
order is ( )n2logΟ [7]. A recent implementation of 
this algorithm is done in 2005 [8].

A parallel sorting algorithm that merges k sorted
lists on CREW PRAM model has a cost 
of ( )PkNN loglog +Ο . P and N are respectively 
number of processors and total entrance time of 
lists. Sen and Scherson show an improvement on 
SIMD mesh with ( )NΟ  steps which is called 

shearsort [9]. In 2004 a nn ×  mesh containing n
data with ( )1log +nn  sorting time was proposed 
by Allen and Wilkinson [10]. A new architecture 
named Multi-Mesh of Trees (MMT) is invented 
recently. This architecture is a combination of multi
mesh and mesh of trees. This architecture uses 4n
processors. Just one algorithm is issued on this 
architecture which is named Esort [11]. The
algorithm's complexity is ( )nlogΟ .

We're always searching for such an algorithm 
that doesn't have problems like: comprehension
complexity, great amount of processors and 
impossibility of data elements increment using fixed 
number of processors.
Issuing a new algorithm on a simple architecture 
with a trade off between number of processors and
execution time is the main aim of this paper.
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2   ILLIAC topology
This topology was introduced by Unger in 1958. In 
this topology each processor has direct connectivity 
with four processors like mesh. In ILLIAC each 
processor has connectivity with next and previous 
processor and also with a processor in a distance of 

N  next and N  previous. N shows number of 
processors. An instance of this topology is shown in
Fig. 1. Maximum distance between two processors 
is N  and the number of processors should be
power of two.

In ILLIAC, the following functions are used to 
connect processors to each other. 
Assuming Nm = :

(1) ( ) NxxII mod11 +=+

(2) ( ) NxxII mod11 −=−

(3) ( ) NmxxII n mod+=+

(4) ( ) NmxxII n mod−=−

Fig. 1 ILLIAC network

3   Neighborhood Algorithm
Neighborhood sorting algorithm is one of odd-even 
transposition sorting algorithms. The number of 
processors in them is less than the number of data 
elements, so data elements are divided into 
processors [12]. 
This algorithm is implemented on linear 
architecture. Four data elements are stored in each 
processor. The running procedure of this algorithm 
is as following:

At each step, the processor sorts it's data 
elements and passes its two greater data elements to 
the next processor, resorts its data elements and 
passes its two lower data to the previous processor.
The above steps are iterated until the list becomes
sorted.
Because of simplicity and the fact that SIMD 
architecture runs just one operation on many data
elements, neighborhood algorithm is the base of our

sorting algorithm. ILLIAC network has more 
connectivity in comparison to the Ring and Mesh
architectures. 
 

4 NSI algorithm
Sorting algorithms which store one data element in 
each processor are simple but their cost is not 
suitable. There are many data elements to sort in 
application programs and this number of processors
is unavailable. Assume that N is the number of 
processors and n  is the number of data elements. 
The relation between them is Nn 4= . The number 
of data elements is quadruple of processors, so each 
processor needs four registers. The N last 
processors should have two local memories.

As each processor has four registers, on more 
data elements you can add registers or processors
into the architecture.
Executing NSI1 algorithm should follow these steps:
1.Four data elements enter each processor all at 
once.
2.A primary sorting executes in each processor and 
sorts the data stored in registers inside processor.
3.Each processor such as i (which i is less 
than NN − ) sends its two greater data elements 
to Ni + and processors that are in the range of

NN −  to N  store two greater data elements in 
their local memory. Each processor sorts its data 
elements. 
4.Processor Ni + sends its two smaller data 
elements to processor i and processors that are in the 
range of NN −  to N restore two greater data 
elements from their local memory into their empty 
registers. Each processor sorts its data elements 
again.
5.Each processor such as i sends its two greater data 
elements to 1+i  and processor 1−N  stores two 
greater data elements in its local memory. Each 
processor sorts its data elements.
6. Processor 1+i sends its two smaller data elements 
to processor i and processor 1−N restores two 
greater data elements from its local memory into its
empty registers. Each processor sorts its data 
elements again.

1 Neighborhood Sort on ILLIAC
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The above steps should iterate until data list 
becomes sorted.

In this algorithm each data element can move 
1+N  in each execution. In the worst case the 

algorithm should run 1−N times to sort data list.
This will cause 22 −N  data exchanges between 
processors. The time order of NSI sorting on 
ILLIAC is ( )NOtn =  and the cost of processors 
is ( )NOpn = . The total cost will 

be ( )NNOCn = .

4.1 Analysis
We have described an algorithm to sort using 
ILLIAC architecture. In this architecture the 
maximum distance between two processors is N , 
so there are 1−N  steps between the furthest 
processors. The algorithm is based on step by step
passing data elements to their locations in the sorted 
list.

In this architecture, the worst case is where data 
elements are 1−N  steps far from their location in 
sorted list. In this case, executing the algorithm on
list will cause 22 −N  data transpositions between
processors. At last, all of data elements are in their 
proper location of sorted list.

The costs of previously issued algorithms and our 
algorithm are presented in the following table for 
comparison. In all cases N  is the number of 
processors and n is the number of data elements.
NSI is an in-place sorting algorithm and doesn't 
need extra space to sort data elements. The 
algorithm is issued on EREW model so there is no 
need to gain access to the same memory location.

It seems that the total cost of NSI is not better 
than Multiway of merge and Count algorithms. 
Multiway of merge algorithm is a merge algorithm 
and input lists should be sorted, so the cost of 
sorting input lists should be considered too [13]. On 
the other hand this algorithm is issued on CREW 
model. Count algorithm is not sorting the list by
comparing data elements and just can sort integer 
data elements.

As seen there are no such limitations in our 
algorithm. As shown in Table 1, NSI offers a better
total cost in comparison to other algorithms.
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Table 1 Comparison table [14, 15] 
 

4.2 Simulation result of NSI algorithm
A result of simulating NSI algorithm is shown in
Fig. 2. We wrote a program to simulate our 
algorithm. The program counts data element 
transpositions between processors in the process of 
sorting the list.
     This simulation sorts 1024 randomly generated
data elements using 256 processors. Number of 
processors for sorting simulation can be specified
when running the program. Each processor in our
simulation program uses four registers; so number 
of data elements is quadruple of processors.
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Fig. 2 Results of simulation for 30 iterations

5 Conclusion
There are many sorting algorithms which use 
parallel architectures. Recently issued algorithms are 
implemented on new architectures like MMT to
improve execution time. MMT architecture is cost 
consuming on initialization. Many processors plus
connection complexity increase its total cost too.
In this paper we issued an algorithm based on 
ILLIAC architecture named NSI.

NSI algorithm is an extension of neighborhood 
algorithm on ILLIAC. Neighborhood algorithm cost
on linear architecture is ( )NO . 

NSI algorithm sorts the list in-place. Also the use 
of ILLIAC architecture causes faster sort in 
comparison to neighborhood algorithm on linear 
architecture. This is because of more connectivity in 
ILLIAC architecture. The sorting cost of NSI 
algorithm is ( )NO .
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