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Abstract. The paper proposes a scale-free model of an Internet and we want to see whether simulation of large-

size scale-free networks is possible and if there are limitations in single-CPU simulation. We later simulate the 
same model using a distributed environment by dividing the task of running the simulation on a number of 
CPU's running in parallel in a cluster and note the differences in simulation time as well as some 

characteristics related to the efficiency of the simulation distribution.  
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1 Introduction 
To model a distributed network environment like 
the Internet, it is necessary to integrate data 
collected from multiple points in a network in order 
to get a complete picture of network-wide view of 

the traffic. Knowledge of dynamic characteristics is 
essential to network management (e.g., detection of 
failures/congestion, provisioning, and traffic 

engineering like QoS routing or server selections). 
However, because of a huge scale and access 

rights, it is expensive (sometime impossible) to 
measure such characteristics directly. To solve this, 
methods and tools for inferencing of unobservable 
network performance characteristics are used in 
large scale networking environment. A model 
where inference based on self similarity and fractal 
behavior can be applied is the scale free network. 

Scale-free networks are complex networks in 
which some nodes are very well connected while 
most nodes have a very small number of 

connections. An important characteristic of scale-
free networks is that they are size independent, that 

is they preserve the same characteristics regardless 
of the network size N. Scale-free networks have a 
degree distribution that follows a power 

relationship, P(k) = k^(-λ), where the coefficient γ 
may vary approximately from 2 to 3 for most real 
networks. Many real networks have a scale-free 
degree distribution, including the Internet.  
Simulation of scale-free networks is necessary in 
order to study their characteristics like fault-
tolerance and resistance to random attacks. 

However, large-scale networks are difficult to 

simulate due to the hefty requirements imposed on 
CPU and memory. Thus a distributed approach to 
simulation can be useful particularly for large-scale 
network simulations, where a single-processor is 

not enough.  

 

 

2 Scale-free topology 
In order to simulate an Internet-like network we 
used an algorithm based on the concept of 

“preferential attachment”. This means that a new 
node will more probably attach to those nodes that 
are already very well connected, i.e. they have a 
large number of connections with other nodes from 
the network. Poor connected nodes, on the other 
hand, have smaller chances of getting new 
connections (see fig.1).  

 

 
Fig. 1. Graphic representation of the generated 

network for 200 network nodes and λ=2.35 
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Besides following the repartition law mentioned 
above, some other restrictions (for example those 
related to cycles and long chains) had to be applied 
in order to make the generated model more realistic 

and similar to the Internet. Another obvious 
restriction is the lack of isolated components (see 
fig.2). 

 
Fig. 2. Graphic representation of the generated 

network for 200 network nodes and λ=2.85 
 

A more subtle restriction is related to the TTL 
(Time-to-living) which is a way to avoid routing 
loops in a real Internet. This translates in a 
restriction for our topology – there can be no more 

that 30 nodes to get from any node to any other 
node. Another subtle restriction is that the 
generated network will also have redundant paths, 

multiple possible routes between nodes. In other 
words, the Internet model topology should not 
"look" like a tree, but should rather have numerous 
cycles. 
The algorithm used for the generation of the scale-
free network topology is generating networks with 
a cyclical degree that can be controlled, in our case, 

approximately 4% of the added nodes form a cycle. 
One more restriction is that we try to avoid long-
line type of scale-free networks – a succession of 

several interconnected nodes – structure that does 
not have a real-life Internet equivalent, so our 

algorithm makes sure such a model is not 
generated.  

 

 

3 Proposed Internet model  
The generated topology consists of three types of 
nodes: Routers, defined as nodes with one or 
several links. Routers do not initiate traffic and do 
not accept connections. Routers can be one of the 
following types: routers that connect primarily 
customers, routers that connect primarily servers 

and routers that connect primarily other routers. 

Routers that connect primarily customers have 
hundreds or thousands of type one connections 
(leaf nodes) and a reduced number of connections 
to other routers.  

Routers that connect primarily servers have a 
reduced number of connections to servers in the 
order of tenths and reduced number (2 or 3) 

connections to other routers. Routers that connect 
primarily routers have a number in the order of 

tenths  of connections to other routers and do not 
have connections to neither servers nor customers.  
Servers are defined as nodes with one connection 
but sometimes could have two or even three 
connections. Servers only accept traffic 
connections but do not initiate traffic. 
Customers (end-users) defined as nodes that have 

only one connection, very seldom two connections. 
Customers initiate traffic connections towards 
servers at random moments but usually in a time 

succession. For our proposed model, we chose a 
20:80 customers to servers ratio. 
 

 

3.1 Scale-free network design algorithm 
We designed and implemented an algorithm that 
generates those subsets of the scale-free networks 
that are close to a real computer network such as 

the Internet. Our application is able to handle very 
large collections of nodes, to control the generation 
of network cycles, and the number of isolated 

nodes. The application was written in Python 
being, as such, portable. It runs very fast on a 

decent machine (less than 5 minutes for 100.000 
nodes model).  
 

Network generation algorithm: 
 
1. set node_count and λ 
2. compute the optimal number of nodes per degree 
3. create manually a small network of 3 nodes 
4. for each node from 4 to node_count 
 4.1. call add_node procedure  

 4.2. while adding was not successful  
  4.2.1. call recompute procedure 
  4.2.2. call add_node procedure 
5. save network description file  
 
add_node procedure 

1. according to the preferential attachment, 

compute the degree of the parent node 
2. if degree could be chosen then exit procedure 
3. compute the number of links that the new node 

shall establish with descendants of its future parent, 
according to copy model 
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4. chose randomly a parent from the nodes having 
the degree as computed above  
5. compute the descendant_list, the list of 
descendants of the newly chosen parent 

6. create the new node and links 
7. for each descendant of the descendant_list 
 7.1. create the corresponding links 

8. exit procedure with success code  
 

recompute procedure 

1. for each degree category 
 1.1. calculate the factor needed to increase 
the optimal count of nodes per degree 
 1.2. if necessary increase the optimal 
number of nodes per degree 
2. exit procedure 

 
The algorithm starts with a manually created 
network of several nodes, then using preferential 

attachment and growth algorithms, new nodes are 
added. We introduced an original component, the 
computation in advance of the number of nodes on 
each degree-level. The preferential attachment rule 
is followed by obeying to the restriction of having 
the optimal number of nodes per degree.  
We noticed that the power law is difficult to follow 

while the network size is growing, as a result we 
calculate again the optimal number of nodes per 
degree-level at given points in the algorithm. This 

is necessary because the bigger the network the 
higher the chance that a new node will be attached 

only to some specific very-connected nodes. In a 
real network, such as the Internet this will not 
happen.  

If only the preferential and growth algorithms are 
followed, then the graph will have no cycles, which 
is not realistic, therefore we introduced a 
component from the “copy model” for graph 
generation in order to make the network graph 
include cyclical components.  
This component ensures that each new node is also 

attached to some of its parent-node descendants 
using a calibration method. The calibration method 

computes the number of additional links that a new 
node must have with the descendants of its parent. 
This number depends on how well-connected is the 

parent and it also includes a random component. 
The output of the application is a network 
description file that can be used by several tools 
like for instance a tool to display the power law. 
This file is stored using a special format needed in 
order to reduce the amount of disk writes.  
 

 
Fig. 3. Graphic representation of the distribution 

law for a scale-free network model and for a 

randomized network with 10000 nodes 
 

In Fig. 3 we compare an almost random network 
distribution law and a free-scale distribution law. 
On the Y axis we represent the number of 
connections and on the X axis the number of nodes 
having this number of connections. It was 
impossible to obtain an completely random 
network given the limitations imposed by the 

Internet model. In this paper we further describe 
only the scale-free network model since we think 
that such a model can lead to a better balancing 

based on the preferential attachment mechanism. 
 

3.2 Traffic generation 
Traffic generation is an essential part of the 
simulation as such, we decided to initiate randomly 
between 1 and 3 simultaneous traffic connections 
from “customer” nodes and for the sake of 
simplicity we used ftp sessions to randomly chosen 

destination servers. We also decided that the links 
connecting routers should have higher speeds than 
lines connecting customers to routers, for example 

- server-router 1 Gbps, client-router 10 Mbps, 
router-router 10, 100 Mbps or 1Gbps depending on 

the type of router. The code generated respecting 
these two conditions is added to the network 
description file, being ready to be processed by the 

simulator. 

 

3.3 Single-CPU simulation 
We used a modular approach that allows us to later 
reuse components for different parts of the 

simulation. For example, the same network model 
generated by the initial script can be used for both 
single-CPU and distributed simulations, allowing a 

comparison between the two types of simulation.  
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Standalone simulations were run under University 
of California Berkeley's NS2 network simulator. 
NS2 (The Network Simulator) is a very complex 
open source discrete event simulator targeted at 

networking research [1]. The simulator is actually 
an OTcl interpreter, which also makes it quite easy 
to use. 

We noticed that on a single machine, as network 
size increases, very soon we hit the limit of the 

network sizes that can be simulated due to 
resources limitations mostly memory but also high 
CPU load. In case of small size network models, 
such as with a few nodes, simulations can be run 
on a single machine. One of the models generated 
with a number of 10000 nodes and a lot of traffic 
connections could not be simulated on an AMD 

Athlon(tm) 64 Processor 3200+ with only 512 
Megabytes of RAM available.  
 

The results provided by NS2 were visualised using 
the nam (network animator) software package. The 
topology generator gives different colours to 
different type of nodes: server, client, router. 
Details about the networking traffic through each 
network node are parsed from the simulator output. 

 

3.4 Multi-CPU simulations 
Unfortunately NS was not designed to run on 
parallel machines. Only in the NS version 3, now 
under alpha development, there are discussions 

about distributed processing. The main obstacle in 
running ns in a distributed/parallel environment is 

related to the description of objects in the 
simulation.  
As such we ran our distributed simulations under 

Georgia Tech's extension to NS2, pdns [2], which 
uses a syntax close to that of NS2, the main 
differences being a number of extensions needed 
for the parallelization so that different instances of 
pdns can communicate with each other and create 
the global image of the network to be simulated.  
Each simulator running on different nodes needs to 

know the status of other simulators. Furthermore, if 
we try to split the network description file into 
separate files and run each of these in separate 
simulation contexts, we need to find a way to 
communicate parameters between the simulation 
nodes.  
The simulation process consists of a number of 

steps, of which, defining network nodes links, 
queue and topology must take into consideration 
the fact that other nodes may not reside under the 

same simulator. All simulations are running 40 
seconds of simulated traffic scenarios. 

 

3.5 Cluster description 
In order to create a parallel/distributed environment 
we have built a cluster using commodity hardware 
and running Linux as operating system [3]. The 
cluster can run applications using a parallelization 

environment.  
We have written and tested applications using 
PVM (Parallel Virtual Machine) which is a 

framework consisting of a number of software 
packages that accomplish the task of creating a 
single machine that spans across multiple CPU's, 
by using the network inter-connection and a 
specific library [4].  Applications must be compiled 
using this specific library in order to permit 
communication. Another framework that can be 

used to run applications in a distributed manner is 
MPI (Message Passing Interface). MPI specifies a 

library for communication between tasks.  
Our cluster consists of a “head” machine and a 
number of six cluster nodes. The “head” provides 

all services for the cluster nodes – IP allocation, 
booting services, File System (NFS) for storage of 
data, facilities for updating, managing and 
controlling the images used by the cluster nodes as 
well as access to the cluster. The “head” computer 
provides an image for the operating system that is 
loaded by each of the cluster nodes since the 

cluster nodes do not have their own storage media. 
As this image resides in the memory of each cluster 
node, we took special steps to reduce the size of 

this image and to make most of the memory 
available to the running processes. We were able to 

reduce this image to 16 megabytes by moving 
different parts of a running Debian Linux system 
over network file systems, leaving on the image 

only those components needed for booting and 
controlling the cluster nodes.  
The application partition is mounted read-only 
while the partition where data is stored is mounted 
read-write and accessible to the users on all 
machines in a similar manner providing transparent 
access  to user data. In order to access the cluster, 

users must connect to a virtual server located on a 
head machine. This virtual server can also act as a 
node in the cluster when extra computation power 
is needed.  

 

3.6 Network Splitting 
In order to use PDNS simulation, we needed to 
split the network into several quasi-independent 

sub-networks [5]. Each instance of PDNS handles a 
specific sub-network, thus the dependencies 
between them need to be minimal, i.e. there shall 
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be as few as possible links between nodes located 
in different sub-networks. 
 
We chose to have a federated simulation approach. 

We designed and implemented a federalization 
algorithm in order to split the original generated 
network into several small ones. The algorithm that 

generates n federative components chooses the 
most n linked nodes, assigned them to an empty 

federation and starts a procedure similar to the 
breadth-first search algorithm. Each node is 
marked as being owned by a federation. 
 
The pdns script generator takes as input the 
generated network description and the generated 
federations, respectively. Depending on the 

connectivity of nodes, they are assigned the role of 
routers, servers, end-users and corresponding 
traffic scenario are associated with them. 

We also used a different approach to partitioning a 
ns script into several pdns scripts by using autopart 
[6], a simulation partitioning tool developed by 
Donghua Xu from Georgia Institute of Technology. 
This tool is based on the graph partitioning package 
called METIS [7]  
 

Autopart takes an NS2 script and creates a number 
of pdns scripts that are ready to run in parallel on a 
number of machines, attempting to make the best 

trade-off between look-ahead, load balancing and 
communication overhead in the partitioning 

process, resulting in the best performance when 
being run by PDNS.  

 

 

4 Simulation results  
We have decided to run simulations for 40 seconds 
of traffic for a scale-free network model with 
10000 nodes. At such a scale, a one-node 

processing is impossible because the cluster node 
runs out of memory. Still, to get valid results we 
had run the simulation on a much more powerful 

machine with plenty of memory and virtual 
memory.  

We chose two different scenarios, one with a 
moderate network traffic and another scenario with 
a heavy network traffic. Each scenario was 
simulated five times under similar load conditions, 
using two to six CPU's and we noted the time used 
for the actual simulation (in seconds).  
 

 
 
 

Table 1. Scale-free network model with 10000 
nodes and moderate network traffic (40 seconds) 

 
Table 2 Scale-free network model with 10000 
nodes and heavy network traffic (40 seconds) 

 
For the first scenario we noted that there is a point 
where adding more nodes in the simulation does 
not help but rather increases the simulation time. In 
this scenario, the optimum number of nodes is 5. 
The second scenario requires much more resources 

as can be seen from the single-processor simulation 
which again failed on the cluster nodes but was 
successful on a more powerful machine, although it 

takes a longer time. Also in this simulation we see 
that adding more nodes (in our case more than 4) 
the simulation process is  slower.  
Another observation is that the 2-CPU simulation 
is actually faster than the 3-CPU simulation, 
although the optimal number of nodes is not 2.  
 

5 Conclusion  
Running pdns is more efficient than running NS2 
especially on large size network models where 

sometimes pdns is the only solution.   However, 
there are limitations in the number of cluster nodes 
that could process a given network model since 
more nodes are used, more traffic links between 
different cluster nodes are to be simulated and 
therefore more time is spent on inter-processor 
communication. 

It is very important to split the network model 
correctly into smaller sub networks (federations) 
since there is a trade-off between the degree of 

separation and federation balancing -  the more 
separated the sub networks are, the more 
unbalanced they become.  

Number  of c lu ster  nodes used
1 2 3 4 5 6

Run  1 failed 319 338 135 173 165

Run  2 failed 343 357 140 176 171

Run  3 failed 347 351 134 177 166

Run  4 failed 316 347 139 177 165

Run  5 failed 308 320 138 178 163

Average 1139 326.6 342.6 137.2 176.2 166

Number  of cluster  nodes used
1 2 3 4 5 6

Run  1 failed 68 46 32 29 40

Run  2 failed 68 41 31 30 37

Run  3 failed 67 43 32 33 31

Run  4 failed 68 45 30 29 43

Run  5 failed 67 45 32 31 40

Aver age 135 67.6 44 31.4 30.4 38.2
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We assume that the results observed in scenario 
number two where the 2-CPU simulation is 
actually faster than the 3-CPU simulation although 
not being the optimal number of cluster nodes, is 

related to the federalization algorithm which failed 
to reach an optimal solution for the 3-CPU scenario 
thus the processing times higher than 2-CPU.  

Further work is necessary to confirm the results 
observed, processing on more than six processors 

and the study of other federalization algorithms. 
We are currently developing a program that can be 
used to study the efficiency of the parallel 
processing and help us understand the interlocking 
mechanisms and further help us improve the 
efficiency of the simulation. 
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